Wang Yaqin, Yang Huiping, Li Zhaoquan, Mo Qian, Li Shuang, Li Longda, Yang Fan, Li Xinchun, Huang Yong
Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University,22 Shuangyong Road, Nanning 530021, China.
Anal Chem. 2025 Aug 19;97(32):17462-17471. doi: 10.1021/acs.analchem.5c02206. Epub 2025 Aug 5.
Mimicking ion-gating function with artificial nanopores empowered by well-designed responsive DNA architectures represents one of the leading maneuvers in the nanopore sensing field. However, due to the rarely preponderant orientation and uncontrollable assembly of conventional DNA constructs at heterogeneous interfaces, the recognition ability and gating efficiency remain a considerable challenge. Here, we show that manipulating the ion-gating efficiency can be readily achieved by the assembly of responsive tetrahedral DNA nanostructures in glass nanopipettes. We design a set of 3D-DNA nanostructures consisting of size-tunable DNA tetrahedrons and Pb-dependent DNAzyme structural domain in the nanopipettes, which served as the ion gate and recognition element, respectively, and thus enabled the sensing of Pb in a label-free manner. Using the constructed 3D-DNA-nanostructured ion-gating systems, we can program stimulus-response capacity and ionic current rectification behaviors in the Pb sensing events. We found that larger-size DNA tetrahedrons resulted in more efficient ion gating and importantly could achieve dynamic linear response to Pb, with the concentration spanning from 10 pM to 10 μM. Finite element simulations revealed that steric hindrance, rather than surface charge, may be a principal cause for regulating trans-pore ion transport. This work opens an avenue for the design of DNA nanostructure-based responsive nanopores for sensing applications.
利用精心设计的响应性DNA结构赋予人造纳米孔模拟离子门控功能,是纳米孔传感领域的主要策略之一。然而,由于传统DNA构建体在异质界面上很少有优势取向且组装不可控,识别能力和门控效率仍然是一个巨大的挑战。在此,我们表明通过在玻璃纳米吸管中组装响应性四面体DNA纳米结构,可以很容易地实现对离子门控效率的调控。我们设计了一组3D-DNA纳米结构,由纳米吸管中尺寸可调的DNA四面体和依赖铅的DNAzyme结构域组成,它们分别作为离子门和识别元件,从而能够以无标记的方式检测铅。使用构建的3D-DNA纳米结构离子门控系统,我们可以在铅传感事件中对刺激-响应能力和离子电流整流行为进行编程。我们发现,较大尺寸的DNA四面体导致更有效的离子门控,重要的是能够对铅实现动态线性响应,浓度范围从10 pM到10 μM。有限元模拟表明,空间位阻而非表面电荷可能是调节跨孔离子传输的主要原因。这项工作为设计用于传感应用的基于DNA纳米结构的响应性纳米孔开辟了一条途径。