Ekaney Thomas Kolle, Søndergaard Ursula, Berzaghi Rodrigo, Figenschau Stine, Sundset Rune, Moldes-Anaya Angel, Kranz Mathias
PET Imaging Center, University Hospital North Norway, Hansine Hansens veg 82, 9019 Tromsø, Norway.
PET Imaging Center, University Hospital North Norway, Hansine Hansens veg 82, 9019 Tromsø, Norway; Hevesy Laboratory, DTU Health Technology, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark.
Nucl Med Biol. 2025 Aug 4;148-149:109056. doi: 10.1016/j.nucmedbio.2025.109056.
Targeted radionuclide therapy (TRT) is an emerging pillar of precision medicine, with prostate-specific membrane antigen (PSMA)-targeted agents like [Lu]PSMA-617 demonstrating notable clinical success. Achieving optimal therapeutic efficacy while minimizing toxicity requires precise tumor and organ dosimetry based on accurate time-activity curves (TACs) derived from molecular imaging. Glioblastoma (GBM), a highly treatment-resistant brain tumor with limited therapeutic possibilities, has shown PSMA expression, opening new avenues for TRT. Copper-67, a promising theranostic isotope producible in standard hospital-based cyclotrons, offers previously unavailable opportunities for such applications. In this study, we evaluated the feasibility of [Cu]Cu-rhPSMA-10.1 for TRT analyzed by SPECT and [Ga]Ga-rhPSMA-10.1 for PET-based imaging and predictive dosimetry in an orthotopic GBM mouse model.
Cu was produced via a biomedical cyclotron, purified, and validated using gamma spectrometry and ICP-OES. [Cu]Cu-rhPSMA-10.1 and [Ga]Ga-rhPSMA-10.1 were synthesized with high radiochemical purity. GL261-luc2 GBM tumors were implanted in eight C57BL/6JRj mice. One hour PET and up to 72 h SPECT imaging were performed. PET pharmacokinetic modeling analyzed tumor uptake and whole-body biodistribution. Ex vivo gamma counting was applied to validate image-derived organ distribution. Tumor dosimetry was estimated using PET-derived TAC and validated by SPECT, with absorbed dose calculations performed via sphere- and voxel-based models (IDAC-dose 2.1 or Imalytics). Whole-body dosimetry was assessed using OLINDA 2.0. Immunohistochemical (IHC) staining against PSMA and CD31 was performed in human GBM tissue to validate the imaging findings.
PET confirmed significantly higher tumor uptake of [Ga]Ga-rhPSMA-10.1 compared to healthy brain (SUVR 1.9 ± 0.5, 60 min). Pharmacokinetic modeling identified elevated tumor perfusion (K1 = 0.3 ± 0.07 mL/cm/min) and volume of distribution (Vt = 0.26 ± 0.05 mL/cm) relative to healthy brain. Predictive tumor dosimetry using [Ga]Ga-rhPSMA-10.1 PET data extrapolated to [Cu]Cu-rhPSMA-10.1 estimated a mean tumor dose of up to 31.1 mGy/MBq. Multi-time-point SPECT imaging confirmed tumor uptake of [Cu]Cu-rhPSMA-10.1, with an absorbed tumor dose of 29.1 mGy/MBq, resembling closely the predicted value. IHC staining confirmed expression of PSMA in human GBM tissue and its localization in vasculature.
This study demonstrates the translational potential of [Cu]Cu-rhPSMA-10.1 as a targeted radionuclide therapy for PSMA-expressing GBM, supported by predictive PET-based dosimetry using [Ga]Ga-rhPSMA-10.1. Tumor dose estimates derived from PET closely matched those validated by SPECT imaging, indicating strong concordance between prediction and actual uptake. Additionally, IHC confirmed PSMA expression in human GBM vasculature, reinforcing the clinical relevance. These findings highlight the feasibility of integrating a cyclotron-produced Cu-based theranostic strategy for GBM, enabling personalized, image-guided dosimetry and paving the way for future preclinical efficacy studies and potential clinical translation.
靶向放射性核素治疗(TRT)是精准医学中一个新兴的支柱领域,像[镥]PSMA - 617这样的前列腺特异性膜抗原(PSMA)靶向药物已取得显著的临床成效。要在将毒性降至最低的同时实现最佳治疗效果,需要基于从分子成像获得的准确时间 - 活度曲线(TAC)进行精确的肿瘤和器官剂量测定。胶质母细胞瘤(GBM)是一种治疗抵抗性很强且治疗可能性有限的脑肿瘤,已显示出PSMA表达,为TRT开辟了新途径。铜 - 67是一种有前景的治疗诊断用同位素,可在标准的医院回旋加速器中生产,为这类应用提供了前所未有的机会。在本研究中,我们在原位GBM小鼠模型中评估了用于TRT的[铜]Cu - rhPSMA - 10.1通过单光子发射计算机断层扫描(SPECT)分析的可行性,以及用于基于正电子发射断层扫描(PET)成像和预测剂量测定的[镓]Ga - rhPSMA - 10.1的可行性。
通过生物医学回旋加速器生产铜,使用γ能谱和电感耦合等离子体质谱法(ICP - OES)进行纯化和验证。以高放射化学纯度合成了[铜]Cu - rhPSMA - 10.1和[镓]Ga - rhPSMA - 10.1。将GL261 - luc2 GBM肿瘤植入八只C57BL / 6JRj小鼠体内。进行了1小时的PET成像以及长达72小时的SPECT成像。PET药代动力学建模分析了肿瘤摄取和全身生物分布。采用离体γ计数来验证图像得出的器官分布。使用PET衍生的TAC估计肿瘤剂量,并通过SPECT进行验证,通过基于球体和体素的模型(IDAC - dose 2.1或Imalytics)进行吸收剂量计算。使用OLINDA 2.0评估全身剂量。在人GBM组织中进行针对PSMA和CD31的免疫组织化学(IHC)染色以验证成像结果。
PET证实,与健康脑相比,[镓]Ga - rhPSMA - 10.1在肿瘤中的摄取显著更高(标准化摄取值[SUVR]为1.9±0.5,60分钟)。药代动力学建模确定相对于健康脑,肿瘤灌注升高(K1 = 0.3±0.07 mL/cm/min)以及分布容积(Vt = 0.26±0.05 mL/cm)升高。使用[镓]Ga - rhPSMA - 10.1 PET数据外推至[铜]Cu - rhPSMA - 10.1的预测肿瘤剂量测定估计平均肿瘤剂量高达31.1 mGy/MBq。多时间点SPECT成像证实了[铜]Cu - rhPSMA - 10.1在肿瘤中的摄取,吸收的肿瘤剂量为29.1 mGy/MBq,与预测值非常接近。IHC染色证实在人GBM组织中PSMA的表达及其在脉管系统中的定位。
本研究证明了[铜]Cu - rhPSMA - 10.1作为针对表达PSMA的GBM的靶向放射性核素治疗的转化潜力,这得到了使用[镓]Ga - rhPSMA - 10.1基于PET的预测剂量测定的支持。从PET得出的肿瘤剂量估计值与通过SPECT成像验证的值紧密匹配,表明预测与实际摄取之间具有高度一致性。此外,IHC证实在人GBM脉管系统中PSMA的表达,加强了临床相关性。这些发现突出了整合基于回旋加速器生产的铜基治疗诊断策略用于GBM的可行性,实现个性化的、图像引导的剂量测定,并为未来的临床前疗效研究和潜在的临床转化铺平道路。