Fanous Michael John, Seybold Christopher Michael, Chen Hanlong, Pillar Nir, Ozcan Aydogan
Electrical and Computer Engineering Department, University of California, Los Angeles, 90095, CA, USA.
Mathematics Department, University of California, Los Angeles, 90095, CA, USA.
NPJ Digit Med. 2025 Aug 6;8(1):506. doi: 10.1038/s41746-025-01882-x.
We developed a rapid scanning optical microscope, termed "BlurryScope", that leverages continuous image acquisition and deep learning to provide a cost-effective and compact solution for automated inspection and analysis of tissue sections. This device offers comparable speed to commercial digital pathology scanners, but at a significantly lower price point and smaller size/weight. Using BlurryScope, we implemented automated classification of human epidermal growth factor receptor 2 (HER2) scores on motion-blurred images of immunohistochemically (IHC) stained breast tissue sections, achieving concordant results with those obtained from a high-end digital scanning microscope. Using a test set of 284 unique patient cores, we achieved testing accuracies of 79.3% and 89.7% for 4-class (0, 1+, 2+, 3+) and 2-class (0/1+, 2+/3+) HER2 classification, respectively. BlurryScope automates the entire workflow, from image scanning to stitching and cropping, as well as HER2 score classification.
我们开发了一种快速扫描光学显微镜,称为“模糊显微镜”(BlurryScope),它利用连续图像采集和深度学习,为组织切片的自动检查和分析提供了一种经济高效且紧凑的解决方案。该设备的速度与商业数字病理扫描仪相当,但价格要低得多,尺寸/重量也更小。使用模糊显微镜,我们在免疫组织化学(IHC)染色的乳腺组织切片的运动模糊图像上实现了人类表皮生长因子受体2(HER2)评分的自动分类,结果与高端数字扫描显微镜获得的结果一致。使用包含284个独特患者样本的测试集,我们在4类(0、1+、2+、3+)和2类(0/1+、2+/3+)HER2分类中分别达到了79.3%和89.7%的测试准确率。模糊显微镜实现了从图像扫描到拼接、裁剪以及HER2评分分类的整个工作流程自动化。