Suppr超能文献

通过聚类分析研究早期慢性肾脏病患者肾功能变异性模式。

Investigating the patterns of renal function variability in early-stage chronic kidney disease by cluster analysis.

作者信息

Kobayashi Arisa, Ohnishi Tsuyoshi, Okuda Tadahisa, Hirano Keita, Ikenoue Tatsuyoshi, Yokoo Takashi, Fukuma Shingo

机构信息

Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8057, Japan.

Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.

出版信息

BMC Nephrol. 2025 Aug 5;26(1):433. doi: 10.1186/s12882-025-04344-4.

Abstract

BACKGROUND

Chronic kidney disease (CKD) is a significant global health concern, with increasing focus on predicting renal prognosis. While renal prognosis is often studied in advanced CKD, variability in renal function and its implications for long-term outcomes in early-stage CKD remain insufficiently examined. This study aimed to investigate renal prognosis in early-stage CKD within the general population, focusing on patterns of renal function variability and factors associated with high variability.

METHODS

This retrospective nationwide cohort study included participants from various geographical regions across Japan. A total of 1,765 adults with early-stage CKD (eGFR 45-59 mL/min/1.73 m), based on two initial screening results, were analyzed. The primary outcome was the pattern of eGFR variability identified by cluster analysis using three parameters: mean residual (difference between linear prediction and observed value), maximum residual, and range. In addition, we used a logistic regression model in order to assess associations between clinical factors and the high-risk cluster.

RESULTS

We identified three distinct clusters based on eGFR variability using cluster analysis. Among these clusters, one exhibited significantly high variability with a high residual (median of mean residuals of 10.9 mL/min/1.73 m and median of maximum residuals of 22.6 mL/min/1.73 m) and a wide range (median of range of 25.1 mL/min/1.73 m) (referred to as the "high variability cluster"). This cluster, comprising 4.6% of patients with early-stage CKD, demonstrated a more pronounced decline in eGFR over time. Factors such as younger age, proteinuria, antihypertensive drug use, and hyperglycemia were associated with the high variability cluster.

CONCLUSIONS

This study highlights the presence of distinct eGFR variability patterns in early-stage CKD and identifies a subgroup at high risk for rapid renal decline. Monitoring eGFR variability provides critical insights into long-term prognosis and may inform targeted interventions. Considering these findings, early detection and management of patients with early CKD may improve disease progression and reduce the risk of adverse outcomes.

TRIAL REGISTRATION

This study is an observational study using a database and does not involve a health care intervention on human participants. Therefore, trial registration is not applicable.

摘要

背景

慢性肾脏病(CKD)是一个重大的全球健康问题,对预测肾脏预后的关注日益增加。虽然肾脏预后通常在晚期CKD中进行研究,但肾功能的变异性及其对早期CKD长期结局的影响仍未得到充分研究。本研究旨在调查普通人群中早期CKD的肾脏预后,重点关注肾功能变异性模式以及与高变异性相关的因素。

方法

这项全国性回顾性队列研究纳入了来自日本不同地理区域的参与者。基于两项初始筛查结果,对总共1765例早期CKD(估算肾小球滤过率[eGFR]为45 - 59 mL/min/1.73m²)的成年人进行了分析。主要结局是使用三个参数通过聚类分析确定的eGFR变异性模式:平均残差(线性预测值与观测值之间的差异)、最大残差和范围。此外,我们使用逻辑回归模型来评估临床因素与高风险聚类之间的关联。

结果

通过聚类分析,我们基于eGFR变异性确定了三个不同的聚类。在这些聚类中,一个聚类表现出显著的高变异性,具有高残差(平均残差中位数为10.9 mL/min/1.73m²,最大残差中位数为22.6 mL/min/1.73m²)和较宽范围(范围中位数为25.1 mL/min/1.73m²)(称为“高变异性聚类”)。该聚类占早期CKD患者的4.6%,随着时间推移,其eGFR下降更为明显。年龄较小、蛋白尿、使用抗高血压药物和高血糖等因素与高变异性聚类相关。

结论

本研究强调了早期CKD中存在不同的eGFR变异性模式,并确定了一个肾脏快速衰退的高风险亚组。监测eGFR变异性可为长期预后提供关键见解,并可能为有针对性的干预提供依据。考虑到这些发现,早期CKD患者的早期检测和管理可能改善疾病进展并降低不良结局的风险。

试验注册

本研究是一项使用数据库的观察性研究,不涉及对人类参与者的医疗保健干预。因此,无需进行试验注册。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验