Shen Mushen, Abraham Ragy, Cribbin Elise, Gregor Harrison, Safavi-Naeini Mitra, Franklin Daniel
School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia.
Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW, Australia.
Sci Rep. 2025 Aug 5;15(1):28607. doi: 10.1038/s41598-025-13339-y.
Accurate localisation of the first point of interaction (FPoI) of incident gamma photons in monolithic scintillators is crucial for many radiation-based imaging applications - in particular, accurate estimation of the lines of response in positron emission tomography (PET). This is particularly challenging in thick nanocomposite and ceramic scintillator materials, which exhibit high levels of Rayleigh scattering compared to monocrystalline scintillators. In this work, we evaluate deep neural network-based approaches for (1) classifying the mode of photon interaction using an InceptionNet-based classifier and (2) accurately estimating the location of the FPoI based on scintillation photon distributions in several monolithic nanocomposite and ceramic scintillators using both CNN- and InceptionNet-based regression networks. The classifier was able to correctly categorise single-energy deposition events with an accuracy ≥ 90.1%, two-deposition interactions with an accuracy ≥ 77.6% and three-plus deposition interactions with an accuracy ≥ 66.7%. Across the evaluated materials, median total localisation error ranged from 0.58 mm to 2.91 mm with the CNN and 0.59 mm to 2.10 mm with InceptionNet, assuming 50% detector quantum efficiency. Localisation in nanocomposites using the InceptionNet-based regression network improved the most relative to previously-reported results based on classical techniques, in some cases approaching the accuracy achieved with ceramic scintillators.
对于许多基于辐射的成像应用而言,准确确定入射伽马光子在整块闪烁体中的首个相互作用点(FPoI)至关重要,尤其是在正电子发射断层扫描(PET)中准确估计响应线。这在厚纳米复合材料和陶瓷闪烁体材料中极具挑战性,因为与单晶闪烁体相比,它们表现出高水平的瑞利散射。在这项工作中,我们评估了基于深度神经网络的方法,用于(1)使用基于InceptionNet的分类器对光子相互作用模式进行分类,以及(2)使用基于卷积神经网络(CNN)和基于InceptionNet的回归网络,根据几种整块纳米复合材料和陶瓷闪烁体中的闪烁光子分布,准确估计FPoI的位置。该分类器能够以≥90.1%的准确率正确分类单能量沉积事件,以≥77.6%的准确率分类双沉积相互作用,以≥66.7%的准确率分类三次及以上沉积相互作用。在所有评估材料中,假设探测器量子效率为50%,使用CNN时总定位误差中位数范围为0.58毫米至2.91毫米,使用InceptionNet时为0.59毫米至2.10毫米。相对于先前基于经典技术报告的结果,使用基于InceptionNet的回归网络对纳米复合材料进行定位的改进最为显著,在某些情况下接近陶瓷闪烁体所达到的准确率。