Suppr超能文献

一种基于神经网络的块状闪烁体中事件定位和计时的联合算法。

A neural network-based algorithm for simultaneous event positioning and timestamping in monolithic scintillators.

机构信息

Università di Pisa, Dipartimento di Fisica E. Fermi, Italy.

Istituto Nazionale di Fisica Nucleare, INFN, sezione di Pisa, Italy.

出版信息

Phys Med Biol. 2022 Jun 21;67(13). doi: 10.1088/1361-6560/ac72f2.

Abstract

. Monolithic scintillator crystals coupled to silicon photomultiplier (SiPM) arrays are promising detectors for PET applications, offering spatial resolution around 1 mm and depth-of-interaction information. However, their timing resolution has always been inferior to that of pixellated crystals, while the best results on spatial resolution have been obtained with algorithms that cannot operate in real-time in a PET detector. In this study, we explore the capabilities of monolithic crystals with respect to spatial and timing resolution, presenting new algorithms that overcome the mentioned problems.Our algorithms were tested first using a simulation framework, then on experimentally acquired data. We tested an event timestamping algorithm based on neural networks which was then integrated into a second neural network for simultaneous estimation of the event position and timestamp. Both algorithms are implemented in a low-cost field-programmable gate array that can be integrated in the detector and can process more than 1 million events per second in real-time.Testing the neural network for the simultaneous estimation of the event position and timestamp on experimental data we obtain 0.78 2D FWHM on the (,) plane, 1.2 depth-of-interaction FWHM and 156 coincidence time resolution on a25mm×25mm×8mm×LYSO monolith read-out by 643mm×3mmHamamatsu SiPMs.Our results show that monolithic crystals combined with artificial intelligence can rival pixellated crystals performance for time-of-flight PET applications, while having better spatial resolution and DOI resolution. Thanks to the use of very light neural networks, event characterization can be done on-line directly in the detector, solving the issues of scalability and computational complexity that up to now were preventing the use of monolithic crystals in clinical PET scanners.

摘要

. 与硅光电倍增管 (SiPM) 阵列耦合的整体闪烁晶体是 PET 应用的有前途的探测器,提供约 1 毫米的空间分辨率和相互作用深度信息。然而,它们的定时分辨率始终劣于像素化晶体,而在 PET 探测器中无法实时运行的算法中获得了最佳的空间分辨率结果。在这项研究中,我们探索了整体晶体在空间和定时分辨率方面的能力,提出了新的算法来克服上述问题。

我们的算法首先在模拟框架中进行了测试,然后在实验获得的数据上进行了测试。我们测试了一种基于神经网络的事件时间戳算法,然后将其集成到第二个神经网络中,用于同时估计事件位置和时间戳。这两个算法都在一个低成本的现场可编程门阵列中实现,可以集成到探测器中,并且可以实时处理每秒超过 100 万个事件。

在实验数据上测试同时估计事件位置和时间戳的神经网络,我们在(,)平面上获得了 0.78 的 2D FWHM,在 25mm×25mm×8mm×LYSO 整体上获得了 1.2 的深度交互 FWHM 和 156 的符合时间分辨率,由 643mm×3mm Hamamatsu SiPM 读取。

我们的结果表明,整体晶体与人工智能相结合,可以与像素化晶体在飞行时间 PET 应用中竞争,同时具有更好的空间分辨率和 DOI 分辨率。由于使用了非常轻的神经网络,可以在线直接在探测器中进行事件特征描述,解决了迄今为止阻止在临床 PET 扫描仪中使用整体晶体的可扩展性和计算复杂性问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验