Suppr超能文献

重新审视蓝藻与温度动态关系:种内竞争和性状多样性是预测气候变化下有害藻华的关键因素

Revisiting Cyanobacteria-Temperature Dynamics: Intraspecific Competition and Trait Diversity as Keys to Predicting Harmful Algal Blooms under Climate Change.

作者信息

Zhang Yanxue, Wu Huaming, Wu Xingqiang, Grossart Hans-Peter, Lorke Andreas

机构信息

Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.

Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany.

出版信息

Environ Sci Technol. 2025 Aug 26;59(33):17811-17821. doi: 10.1021/acs.est.5c04849. Epub 2025 Aug 6.

Abstract

Cyanobacterial harmful algal blooms are expanding spatiotemporally, with an increasing occurrence of cold-water cyanobacterial blooms (CWCBs), intensifying ecological and water quality challenges. While abiotic drivers have been identified as contributors to CWCBs, the role of biotic factors─particularly the adaptation induced by the shifts in intraspecific trait distributions─in this process remains largely unexplored. Here, we tested the hypothesis that the thermal history of cyanobacteria affects their thermal adaptations by reshaping the distribution of optimum growth temperature (). Using a trait-based phytoplankton model coupled with a one-dimensional lake model, we simulated cyanobacteria dynamics over 364 days in a large, eutrophic, shallow lake recently experiencing CWCBs. The model demonstrated that diversification promotes cold-adapted strains, leading to CWCBs while mitigating summer blooms. This occurs because the thermal response of -diverse populations depends on their distribution, which is determined by past temperature sequence, allowing -diverse populations to retain a 'memory' of temperatures preceding summer. Consequently, increased summer temperatures inhibit these cold-adapted populations, challenging the prevailing cyanobacteria-temperature paradigm, which suggests that high temperatures universally favor cyanobacteria. These findings reveal that models assuming fixed traits may misrepresent cyanobacterial dynamics under climate change, highlighting the necessity of incorporating trait diversity into predictive frameworks for improved forecasting and to support adaptive lake management strategies.

摘要

蓝藻有害藻华正在时空上不断扩展,冷水蓝藻藻华(CWCBs)的发生频率也在增加,这加剧了生态和水质挑战。虽然非生物驱动因素已被确定为导致冷水蓝藻藻华的因素,但生物因素的作用——特别是种内性状分布变化所引发的适应性——在这一过程中仍 largely unexplored。在这里,我们检验了这样一个假设,即蓝藻的热历史通过重塑最适生长温度()的分布来影响它们的热适应性。我们使用基于性状的浮游植物模型与一维湖泊模型相结合,模拟了一个大型富营养浅水湖泊中364天的蓝藻动态,该湖泊最近经历了冷水蓝藻藻华。模型表明, 多样化促进了冷适应菌株的生长,导致冷水蓝藻藻华,同时减轻夏季藻华。之所以会这样,是因为 多样种群的热响应取决于它们的 分布,而这种分布由过去的温度序列决定,使得 多样种群能够保留夏季之前温度的“记忆”。因此,夏季温度升高会抑制这些冷适应种群,这挑战了普遍认为高温普遍有利于蓝藻的主流蓝藻-温度范式。这些发现表明,假设性状固定的模型可能会错误呈现气候变化下的蓝藻动态,强调了将性状多样性纳入预测框架以改进预测并支持适应性湖泊管理策略的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验