Mastroleo Federico, Marvaso Giulia, Jereczek-Fossa Barbara Alicja
Division of Radiation Oncology, IEO European Institute of Oncology IRCCS.
Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
Curr Opin Urol. 2025 Sep 1;35(5):543-548. doi: 10.1097/MOU.0000000000001309. Epub 2025 Jun 11.
Muscle-invasive bladder cancer (MIBC) represents an aggressive malignancy with significant morbidity and mortality. Recent advances in artificial intelligence (AI) offer promising opportunities to enhance patient care across the entire MIBC management spectrum. This comprehensive review examines the current state and future potential of AI applications in MIBC, from diagnosis through treatment to response assessment.
In the diagnostic domain, AI systems demonstrate superior accuracy in cystoscopic cancer detection and staging, with deep learning models achieving high performance in differentiating muscle-invasive from noninvasive disease. For treatment planning, AI facilitates precise tumor delineation for radiotherapy, automates adaptive planning, and supports surgical decision-making through predictive lymph node involvement models. In treatment response evaluation, machine learning algorithms show encouraging results in predicting neoadjuvant chemotherapy outcomes, while radiomics and quantitative imaging biomarkers enable early response assessment. Despite these advances, significant challenges persist, including methodological limitations, dataset heterogeneity, workflow integration barriers, and regulatory uncertainties. Future directions should prioritize prospective clinical validation, federated learning approaches to address data scarcity, development of interpretable AI models, and interdisciplinary collaboration.
The integration of AI in MIBC management represents a paradigm shift toward personalized medicine, with the potential to improve diagnostic accuracy, optimize treatment selection, and enhance response prediction.
肌层浸润性膀胱癌(MIBC)是一种侵袭性恶性肿瘤,具有较高的发病率和死亡率。人工智能(AI)的最新进展为改善MIBC整个管理过程中的患者护理提供了有希望的机会。这篇综述全面审视了AI在MIBC中的应用现状及未来潜力,涵盖从诊断到治疗再到疗效评估的各个方面。
在诊断领域,AI系统在膀胱镜检查癌症检测和分期方面显示出更高的准确性,深度学习模型在区分肌层浸润性疾病和非浸润性疾病方面表现出色。在治疗规划方面,AI有助于精确勾勒放疗的肿瘤轮廓,实现自适应规划自动化,并通过预测淋巴结受累模型支持手术决策。在治疗反应评估中,机器学习算法在预测新辅助化疗结果方面显示出令人鼓舞的结果,而放射组学和定量成像生物标志物能够实现早期反应评估。尽管取得了这些进展,但仍存在重大挑战,包括方法学局限性、数据集异质性、工作流程整合障碍和监管不确定性。未来的方向应优先考虑前瞻性临床验证