Suppr超能文献

利用蛋白质语言模型引导的生成对抗网络从头设计多种微塑料结合肽

De Novo Design of Multiple Microplastic-Binding Peptides with a Protein Language Model-Guided Generative Adversarial Network.

作者信息

Wang Siyuan, Bergman Michael T, Hall Carol K, You Fengqi

机构信息

College of Engineering, Cornell University, Ithaca, New York 14853, United States.

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States.

出版信息

J Chem Inf Model. 2025 Aug 25;65(16):8527-8537. doi: 10.1021/acs.jcim.5c01401. Epub 2025 Aug 6.

Abstract

Microplastics are heterogeneous pollutants that pose significant risks to ecosystems and human health. Innovative mitigation strategies are urgently needed. Plastic-binding peptides represent a promising eco-friendly approach for detecting or capturing microplastic pollution. Since real-world microplastic pollution consists of multiple types of plastic, it would be particularly useful to have peptides that bind to multiple plastics. However, there are no known peptides with this property. We present a generalizable AI-driven framework for the de novo design of plastic-binding peptides with a high affinity for multiple plastics. The framework integrates a pretrained protein language model (PLM), fine-tuned on biophysical modeling data of peptide adsorption to plastics generated by the PepBD algorithm, that guides peptide design with a generative adversarial network (GAN). The PLM provides appropriate embeddings of peptide physicochemical features that lead to accurate predictions of peptide affinity for a given plastic. The GAN model is trained via a modular split-training strategy to ensure stability, sequence diversity, and the ability to optimize peptide affinity to any desired combination of plastics. We use this framework to design peptides with high affinity for polyethylene, polypropylene, and poly(ethylene terephthalate). Molecular dynamics simulations confirm that the generated peptides exhibit strong multiplastic binding, having average adsorption free energies to the three plastics that are ∼30% more favorable than those of peptides previously designed using biophysical methods. Steered molecular dynamics simulations reveal that one peptide has an exceptionally high affinity for both polyethylene and polypropylene. These findings highlight the potential of AI-driven peptide design for addressing microplastic pollution and broader applications in peptide engineering.

摘要

微塑料是一种异质污染物,对生态系统和人类健康构成重大风险。迫切需要创新的缓解策略。塑料结合肽是一种很有前景的检测或捕获微塑料污染的环保方法。由于现实世界中的微塑料污染由多种类型的塑料组成,拥有能与多种塑料结合的肽将特别有用。然而,目前还没有已知具有这种特性的肽。我们提出了一个通用的人工智能驱动框架,用于从头设计对多种塑料具有高亲和力的塑料结合肽。该框架整合了一个预训练的蛋白质语言模型(PLM),该模型在由PepBD算法生成的肽对塑料吸附的生物物理建模数据上进行了微调,并通过生成对抗网络(GAN)指导肽的设计。PLM提供了肽物理化学特征的适当嵌入,从而能够准确预测肽对给定塑料的亲和力。GAN模型通过模块化的分割训练策略进行训练,以确保稳定性、序列多样性以及优化肽对任何所需塑料组合亲和力的能力。我们使用这个框架设计了对聚乙烯、聚丙烯和聚对苯二甲酸乙二酯具有高亲和力的肽。分子动力学模拟证实,生成的肽表现出很强的多塑料结合能力,对这三种塑料的平均吸附自由能比以前使用生物物理方法设计的肽更有利约30%。定向分子动力学模拟表明,一种肽对聚乙烯和聚丙烯都具有极高的亲和力。这些发现突出了人工智能驱动的肽设计在解决微塑料污染方面的潜力以及在肽工程中的更广泛应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验