Suppr超能文献

ALPD-Net:一种基于无人机图像的野生甘草检测网络。

ALPD-Net: a wild licorice detection network based on UAV imagery.

作者信息

Yang Jing, Qin Huaibin, Dai Jianguo, Zhang Guoshun, Xu Miaomiao, Qin Yuan, Liu Jinglong

机构信息

College of Information Science and Technology, Shihezi University, Shihezi, China.

出版信息

Front Plant Sci. 2025 Jul 22;16:1617997. doi: 10.3389/fpls.2025.1617997. eCollection 2025.

Abstract

INTRODUCTION

Licorice has significant medicinal and ecological importance. However, prolonged overharvesting has resulted in twofold damage to wild licorice resources and the ecological environment. Thus, precisely determining the distribution and growth condition of wild licorice is critical. Traditional licorice resource survey methods are unsuitable for complex terrain and do not meet the requirements of large-scale monitoring.

METHODS

In order to solve this problem, this study constructs a new dataset of wild licorice that was gathered using Unmanned Aerial Vehicle (UAV) and proposes a novel detection network named ALPD-Net for identifying wild licorice. To improve the model's performance in complex backgrounds, an Adaptive Background Suppression Module (ABSM) was designed. Through adaptive channel space and positional encoding, background interference is effectively suppressed. Additionally, to enhance the model's attention to licorice at different scales, a Lightweight Multi-Scale Module (LMSM) using multi-scale dilated convolution is introduced, significantly reducing the probability of missed detections. At the same time, a Progressive Feature Fusion Module (PFFM) is developed, where a weighted self-attention fusion strategy is employed to effectively merge detailed and semantic information from adjacent layers, thereby preventing information loss or mismatches.

RESULTS AND DISCUSSION

The experimental results show that ALPD-Net achieves good detection accuracy in wild licorice identification, with precision 73.3%, recall 76.1%, and mean Average Precision at IoU=0.50 (mAP50) of 79.5%. Further comparisons with mainstream object detection models show that ALPD-Net not only provides higher detection accuracy for wild licorice, but also dramatically reduces missed and false detections. These features make ALPD-Net a potential option for large-scale surveys and monitoring of wild licorice resources using UAV remote sensing.

摘要

引言

甘草具有重要的药用和生态价值。然而,长期过度采挖对野生甘草资源和生态环境造成了双重破坏。因此,精确确定野生甘草的分布和生长状况至关重要。传统的甘草资源调查方法不适用于复杂地形,无法满足大规模监测的需求。

方法

为了解决这一问题,本研究构建了一个使用无人机采集的野生甘草新数据集,并提出了一种名为ALPD-Net的新型检测网络来识别野生甘草。为提高模型在复杂背景下的性能,设计了一个自适应背景抑制模块(ABSM)。通过自适应通道空间和位置编码,有效抑制了背景干扰。此外,为增强模型对不同尺度甘草的关注,引入了一个使用多尺度扩张卷积的轻量级多尺度模块(LMSM),显著降低了漏检概率。同时,开发了一个渐进特征融合模块(PFFM),采用加权自注意力融合策略有效合并相邻层的细节和语义信息,从而防止信息丢失或不匹配。

结果与讨论

实验结果表明,ALPD-Net在野生甘草识别中取得了良好的检测精度,精确率为73.3%,召回率为76.1%,在交并比IoU = 0.50时的平均精度均值(mAP50)为79.5%。与主流目标检测模型的进一步比较表明,ALPD-Net不仅为野生甘草提供了更高的检测精度,还显著减少了漏检和误检。这些特性使ALPD-Net成为使用无人机遥感进行野生甘草资源大规模调查和监测的潜在选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d8/12322703/553e5e89c3e2/fpls-16-1617997-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验