Suppr超能文献

一种基于无人机和哨兵-2卫星的用于环境监测的新型图像融合方法。

A novel image fusion method based on UAV and Sentinel-2 for environmental monitoring.

作者信息

Zhang Fan, Guo Aobo, Hu Zhenqi, Liang Yusheng

机构信息

School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.

College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.

出版信息

Sci Rep. 2025 Jul 26;15(1):27256. doi: 10.1038/s41598-025-13049-5.

Abstract

In recent years, with the rapid development of remote sensing technology, environmental monitoring in mining areas using remote sensing imagery has gained increasing attention. Due to the small scale of mining areas, the resolution of satellite remote sensing imagery is insufficient for detailed monitoring needs. UAV remote sensing imagery provides high resolution, but its monitoring range is limited and lacks access to historical data. Furthermore, effectively fusing multi-source data with disparate spatial-temporal characteristics to accurately capture the complex dynamic changes in mining areas remains a key methodological challenge.To address this, this study, utilizing UAV remote sensing imagery and Sentinel-2 satellite imagery acquired on September 5, 2023, from the Erlintu mining area, proposes a novel fusion method aimed at achieving small-scale, long-term environmental monitoring in mining areas.First, the spatial resolution of both UAV and Sentinel-2 imagery is resampled to 0.1 m. Second, a two-layer preprocessing approach is applied to enhance data quality. Third, a stacked inversion model based on an ensemble learning framework is developed. Finally, using high-resolution UAV imagery as the reference, and original, resampled, and model-inverted Sentinel-2 imagery as experimental values, accuracy is assessed and analyzed with Mean Absolute Percentage Error (MAPE) as the metric. Results demonstrate that the stacked learning model, combined with cubic convolution resampling, reduces the MAPE of NDVI values between Sentinel-2 and UAV imagery from 54.31 to 10.01%, markedly improving accuracy. This study further uncovers the synergistic effect of resampling techniques and model architecture, offering reliable data support for small-scale, long-term environmental monitoring in mining areas.

摘要

近年来,随着遥感技术的快速发展,利用遥感影像进行矿区环境监测越来越受到关注。由于矿区面积较小,卫星遥感影像的分辨率不足以满足详细监测需求。无人机遥感影像提供了高分辨率,但其监测范围有限且无法获取历史数据。此外,有效融合具有不同时空特征的多源数据以准确捕捉矿区复杂的动态变化仍然是一个关键的方法挑战。为解决这一问题,本研究利用2023年9月5日从二林图矿区获取的无人机遥感影像和哨兵-2卫星影像,提出了一种新颖的融合方法,旨在实现矿区小尺度、长期的环境监测。首先,将无人机和哨兵-2影像的空间分辨率重采样至0.1米。其次,应用两层预处理方法提高数据质量。第三,开发了基于集成学习框架的堆叠反演模型。最后,以高分辨率无人机影像为参考,以原始、重采样和模型反演的哨兵-2影像为实验值,以平均绝对百分比误差(MAPE)为指标进行精度评估和分析。结果表明,堆叠学习模型与三次卷积重采样相结合,将哨兵-2影像与无人机影像之间归一化植被指数(NDVI)值的MAPE从54.31%降低至10.01%,显著提高了精度。本研究进一步揭示了重采样技术与模型架构的协同效应,为矿区小尺度、长期环境监测提供了可靠的数据支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验