Suppr超能文献

美国社区居住的有或无抑郁症的中老年成年人中免疫代谢生物标志物网络和聚类以及与抑郁症相关的特征

Networks and clusters of immunometabolic biomarkers and depression-associated features in middle-aged and older community-dwelling US adults with and without depression.

作者信息

Hallab Asma

出版信息

medRxiv. 2025 Aug 1:2025.07.30.25332419. doi: 10.1101/2025.07.30.25332419.

Abstract

INTRODUCTION

Therapy-resistant depression is associated with higher levels of systemic inflammation and increased odds of metabolic disorders. It is, therefore, crucial to identify the biomarkers of high-risk individuals and understand the key features of depression-immune-metabolic networks.

METHODS

The multiethnic ≥ 50-year-old study population is a subset of the Health and Aging Brain Study: Health Disparities (HABS-HD) study. Spearman's rank correlation network analysis was performed between immunological, metabolic, and subscales of the Geriatric Depression Scale (GDS). Significant correlations were then evaluated using a multivariable linear regression analysis, including testing for non-linearity and clinical cutoffs.

RESULTS

Two clusters were formed: the first included the immune-metabolic biomarkers, and the second included the different subscales of GDS. The two clusters were significantly correlated at six edges. IL-6 and HbA1c were significantly correlated with anhedonic and melancholic features. Abdominal circumference and BMI were significantly correlated with anhedonic features. In the subgroup without current depression, IL-6 and Abdominal circumference maintained a significant edge with anhedonic features. The observed correlations remained statistically significant in the confounder-adjusted regression analysis and followed specific patterns.

CONCLUSIONS

Symptom clustering showed its superiority over relying on dichotomized depression diagnoses for identifying relevant immunometabolic biomarkers. This study is a first step toward understanding the particularities of immunometabolic depression for better risk stratification and to direct personalized preventive and therapeutic strategies in multiethnic aging populations.

摘要

引言

难治性抑郁症与全身炎症水平升高及代谢紊乱几率增加有关。因此,识别高危个体的生物标志物并了解抑郁 - 免疫 - 代谢网络的关键特征至关重要。

方法

≥50岁的多民族研究人群是健康与衰老大脑研究:健康差异(HABS - HD)研究的一个子集。对免疫学、代谢指标与老年抑郁量表(GDS)各分量表进行斯皮尔曼等级相关网络分析。然后使用多变量线性回归分析评估显著相关性,包括非线性检验和临床临界值检验。

结果

形成了两个聚类:第一个聚类包括免疫 - 代谢生物标志物,第二个聚类包括GDS的不同分量表。这两个聚类在六个节点处显著相关。白细胞介素 - 6(IL - 6)和糖化血红蛋白(HbA1c)与快感缺失和抑郁特征显著相关。腹围和体重指数(BMI)与快感缺失特征显著相关。在目前无抑郁症的亚组中,IL - 6和腹围与快感缺失特征保持显著关联。在混杂因素调整后的回归分析中,观察到的相关性仍具有统计学意义,并遵循特定模式。

结论

症状聚类在识别相关免疫代谢生物标志物方面显示出优于依赖二分法抑郁症诊断的优势。本研究是迈向了解免疫代谢性抑郁症特殊性的第一步,以便在多民族老年人群中进行更好的风险分层并指导个性化的预防和治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0124/12324641/d3406e8817d5/nihpp-2025.07.30.25332419v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验