Suppr超能文献

组学整合揭示与HIV病毒载量相关的机制及潜在治疗见解。

Omics Integration Uncovers Mechanisms Associated with HIV Viral Load and Potential Therapeutic Insights.

作者信息

Sullivan Kyle A, Minto Melyssa S, Zhang Xinyu, Carr William, Quach Bryan C, Willis Caryn, Townsend Alice, Kruse Peter, Lane Matthew, Morgan Richard, Xu Ke, Aouizerat Bradley E, Hancock Dana B, Jacobson Daniel A, Johnson Eric O

机构信息

Computational and Predictive Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN.

GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC.

出版信息

medRxiv. 2025 Jul 30:2025.07.29.25332397. doi: 10.1101/2025.07.29.25332397.

Abstract

While antiretroviral therapy (ART) has significantly improved disease prognosis in people with HIV (PWH), understanding the biological mechanisms underlying plasma HIV-1 RNA viral load (VL) can inform additional strategies to slow HIV/AIDS disease progression. Here, we integrated multi-omic datasets and used two machine learning network biology tools (GRIN and MENTOR) to identify biological mechanisms associated with VL across 10 cohorts from multiple omics data sets. We integrated the following gene sets: 3 genes from HIV set point VL GWAS, 258 genes whose expression was associated with set point VL in CD4+ T-cells, 143 genes based on DNA methylation associations with VL, and 8 genes previously known to affect the pharmacokinetics of ART. Using GRIN, we retained 194 VL genes based on their high network interconnectivity. We then used MENTOR to collaboratively interpret subsets of these genes and identified the following biological processes: cell cycle checkpoint pathways associated with non-AIDS defining cancers, oxidative stress, viral replication, and interferon signaling. Using these network tools for multi-omic integration, we present a conceptual model of mechanisms underlying HIV VL, and identify drug repurposing candidates to complement existing ART to enhance treatment response and reduce HIV-related comorbidities.

摘要

虽然抗逆转录病毒疗法(ART)显著改善了艾滋病毒感染者(PWH)的疾病预后,但了解血浆HIV-1 RNA病毒载量(VL)背后的生物学机制可以为减缓艾滋病毒/艾滋病疾病进展的其他策略提供信息。在这里,我们整合了多组学数据集,并使用两种机器学习网络生物学工具(GRIN和MENTOR)从多个组学数据集中识别出与10个队列中VL相关的生物学机制。我们整合了以下基因集:来自HIV设定点VL全基因组关联研究(GWAS)的3个基因、其表达与CD4+ T细胞中设定点VL相关的258个基因、基于与VL的DNA甲基化关联的143个基因,以及先前已知影响ART药代动力学的8个基因。使用GRIN,我们基于其高网络连通性保留了194个VL基因。然后,我们使用MENTOR对这些基因的子集进行协同解读,并确定了以下生物学过程:与非艾滋病定义癌症相关的细胞周期检查点途径、氧化应激、病毒复制和干扰素信号传导。通过使用这些网络工具进行多组学整合,我们提出了一个HIV VL潜在机制的概念模型,并确定了药物再利用候选药物,以补充现有的ART,增强治疗反应并减少与HIV相关的合并症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a3/12324665/0c9cff3f7589/nihpp-2025.07.29.25332397v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验