Ogando Mora B, Abdeladim Lamiae, Sit Kevin K, Shin Hyeyoung, Sridharan Savitha, Gopakumar Karthika, Adesnik Hillel
Department of Neuroscience, University of California, Berkeley.
The Helen Wills Neuroscience Institute, University of California, Berkeley.
bioRxiv. 2025 Aug 2:2025.08.02.668307. doi: 10.1101/2025.08.02.668307.
To interpret complex sensory scenes, animals exploit statistical regularities to infer missing features and suppress redundant or ambiguous information. Cortical microcircuits might contribute to this cognitive goal by either completing or cancelling predictable activity, but it remains unknown whether, and how, a single circuit can implement these antagonistic computations. To address this central question, we used all-optical physiology to simulate sensory-evoked activity patterns in pyramidal cells (PCs) and somatostatin interneurons (SSTs) in the mouse's primary visual cortex (V1). In the absence of external visual input, photostimulation of orientation-tuned PC ensembles drove either completion or cancelation of input-matching representations, depending on the number of photostimulated cells. This dual computational capacity arose from the co-existence of 'like-to-like' excitatory interactions between PCs, and a newly discovered 'like-to-like' SST-PC connectivity motif, in which SSTs are preferentially recruited by, and in turn suppress, similarly tuned PCs. Finally, we show that photoactivation of tuned SST ensembles during visual processing improved the discriminability of their preferred visual input by suppressing ambiguous activity. Thus, these complementary feature-specific connectivity motifs allow different strategies of contextual modulation to optimize inference by either completion (through PC-PC interactions) or cancelation (via PC-SST-PC loops) of predictable activity, depending on the structure of the input and the network state.
为了解读复杂的感官场景,动物利用统计规律来推断缺失的特征并抑制冗余或模糊的信息。皮质微电路可能通过完成或消除可预测的活动来实现这一认知目标,但单个电路是否以及如何能够执行这些相反的计算仍然未知。为了解决这个核心问题,我们使用全光学生理学来模拟小鼠初级视觉皮层(V1)中锥体细胞(PCs)和生长抑素中间神经元(SSTs)的感觉诱发活动模式。在没有外部视觉输入的情况下,对方向调谐的PC集合进行光刺激会驱动输入匹配表征的完成或消除,这取决于光刺激细胞的数量。这种双重计算能力源于PC之间“同类对同类”兴奋性相互作用的共存,以及一种新发现的“同类对同类”SST-PC连接模式,其中SSTs优先被调谐相似的PCs招募并反过来抑制它们。最后,我们表明在视觉处理过程中对调谐的SST集合进行光激活,通过抑制模糊活动提高了其偏好视觉输入的可辨别性。因此,这些互补的特征特异性连接模式允许不同的上下文调制策略,根据输入结构和网络状态,通过完成(通过PC-PC相互作用)或消除(通过PC-SST-PC环路)可预测活动来优化推理。