Suppr超能文献

NLRP3炎性小体在破骨细胞中通过一种依赖Tmem178的机制进行调节,该机制限制钙内流。

NLRP3 inflammasome is regulated in osteoclasts through a Tmem178-dependent mechanism that restricts calcium influx.

作者信息

Kaur Khushpreet, Alippe Yael, Wang Chun, Semenkovich Nicholas P, Bhagat Saumya, Khanna Kunjan, Li Yongjia, Pokhrel Nitin, Peterson Timothy, Veis Deborah J, Abu-Amer Yousef, Faccio Roberta, Mbalaviele Gabriel

机构信息

Division of Bone and Mineral Diseases, Washington University School of Medicine; St. Louis, MO 63110, USA.

Data Science Institute, Medical College of Wisconsin; Milwaukee, WsI 53226, USA.

出版信息

bioRxiv. 2025 Jul 31:2025.07.28.667255. doi: 10.1101/2025.07.28.667255.

Abstract

Osteoclasts (OCs) differentiate from macrophages in response to RANKL. Here, we investigated the role of the NLRP3 inflammasome in mouse macrophages, with or without exposure to RANKL. Unexpectedly, we found that NLRP3 expression gradually declined during osteoclastogenesis but could be restored with LPS treatment. LPS and nigericin robustly activated this inflammasome in macrophages, as expected, but not in OCs. Mechanistically, we identified Tmem178, a protein that restrains Ca release from the endoplasmic reticulum (ER) and highly expressed in OCs, as an inhibitor of this inflammasome. Notably, NLRP3 inflammasome activation was robust in OCs lacking Tmem178 or wild-type (WT) OCs exposed to high calcium concentrations. studies demonstrated that under the conditions where OCs efficiently release Ca from bone, inflammasome formation was enhanced. Furthermore, deletion of rescued osteopenia in mice. Thus, we found that Tmem178 uniquely restricts Ca release from ER in OCs, thereby suppressing NLRP3 inflammasome activation.

摘要

破骨细胞(OCs)在RANKL的作用下从巨噬细胞分化而来。在此,我们研究了NLRP3炎性小体在暴露于或未暴露于RANKL的小鼠巨噬细胞中的作用。出乎意料的是,我们发现NLRP3的表达在破骨细胞生成过程中逐渐下降,但可通过LPS处理恢复。正如预期的那样,LPS和尼日利亚菌素能强烈激活巨噬细胞中的这种炎性小体,但在破骨细胞中则不然。从机制上讲,我们鉴定出Tmem178,一种抑制内质网(ER)钙释放且在破骨细胞中高表达的蛋白质,作为这种炎性小体的抑制剂。值得注意的是,在缺乏Tmem178的破骨细胞或暴露于高钙浓度的野生型(WT)破骨细胞中,NLRP3炎性小体的激活很强烈。研究表明,在破骨细胞从骨中有效释放钙的条件下,炎性小体的形成会增强。此外,敲除 在 小鼠中挽救了骨质减少。因此,我们发现Tmem178独特地限制了破骨细胞中内质网的钙释放,从而抑制了NLRP3炎性小体的激活。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e72/12324300/69322d67138e/nihpp-2025.07.28.667255v1-f0001.jpg

相似文献

2
Hypocrellin A from an ethnic medicinal fungus protects against NLRP3-driven gout in mice by suppressing inflammasome activation.
Acta Pharmacol Sin. 2025 Apr;46(4):1016-1029. doi: 10.1038/s41401-024-01434-1. Epub 2024 Dec 16.
3
Two-pore potassium channel TREK-1 (K2P2.1) regulates NLRP3 inflammasome activity in macrophages.
Am J Physiol Lung Cell Mol Physiol. 2024 Mar 1;326(3):L367-L376. doi: 10.1152/ajplung.00313.2023. Epub 2024 Jan 22.
7
GITR exacerbates lysophosphatidylcholine-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3.
Cell Mol Immunol. 2024 Jul;21(7):674-688. doi: 10.1038/s41423-024-01170-w. Epub 2024 May 13.
8
Shear-Stress Initiates Signal Two of NLRP3 Inflammasome Activation in LPS-Primed Macrophages through Piezo1.
ACS Appl Mater Interfaces. 2025 Feb 5;17(5):7363-7376. doi: 10.1021/acsami.4c18845. Epub 2025 Jan 21.
9
Bystander monocytic cells drive infection-independent NLRP3 inflammasome response to SARS-CoV-2.
mBio. 2024 Oct 16;15(10):e0081024. doi: 10.1128/mbio.00810-24. Epub 2024 Sep 6.

本文引用的文献

1
Cytokines in gingivitis and periodontitis: from pathogenesis to therapeutic targets.
Front Immunol. 2024 Aug 26;15:1435054. doi: 10.3389/fimmu.2024.1435054. eCollection 2024.
2
Crosstalk between bone and the immune system.
J Bone Miner Metab. 2024 Jul;42(4):470-480. doi: 10.1007/s00774-024-01539-x. Epub 2024 Jul 26.
3
Chemotherapy activates inflammasomes to cause inflammation-associated bone loss.
Elife. 2024 Apr 11;13:RP92885. doi: 10.7554/eLife.92885.
4
TRPV1 modulated NLRP3 inflammasome activation via calcium in experimental subarachnoid hemorrhage.
Aging (Albany NY). 2024 Jan 4;16(2):1096-1110. doi: 10.18632/aging.205379.
5
What are NLRP3-ASC specks? an experimental progress of 22 years of inflammasome research.
Front Immunol. 2023 Jul 26;14:1188864. doi: 10.3389/fimmu.2023.1188864. eCollection 2023.
6
Tmem178 Negatively Regulates IL-1β Production Through Inhibition of the NLRP3 Inflammasome.
Arthritis Rheumatol. 2024 Jan;76(1):107-118. doi: 10.1002/art.42666. Epub 2023 Nov 13.
7
Inflammasomes and the IL-1 Family in Bone Homeostasis and Disease.
Curr Osteoporos Rep. 2022 Jun;20(3):170-185. doi: 10.1007/s11914-022-00729-8. Epub 2022 May 14.
8
Terminally differentiated osteoclasts organize centrosomes into large clusters for microtubule nucleation and bone resorption.
Mol Biol Cell. 2022 Jul 1;33(8):ar68. doi: 10.1091/mbc.E22-03-0098. Epub 2022 May 5.
9
Inflammasome Meets Centrosome: Understanding the Emerging Role of Centrosome in Controlling Inflammasome Activation.
Front Immunol. 2022 Feb 24;13:826106. doi: 10.3389/fimmu.2022.826106. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验