Suppr超能文献

光谱散度对物质使用障碍和心血管疾病之间共有的关键类别、基因和通路进行了优先排序。

Spectral divergence prioritizes key classes, genes, and pathways shared between substance use disorders and cardiovascular disease.

作者信息

Castaneda Everest, Chesler Elissa, Baker Erich

机构信息

Department of Biology, Baylor University, Waco, TX, United States.

School of Engineering and Computer Science, Baylor University, Waco, TX, United States.

出版信息

Front Neurosci. 2025 Jul 22;19:1572243. doi: 10.3389/fnins.2025.1572243. eCollection 2025.

Abstract

INTRODUCTION

Substance use disorders (SUDs) are heterogeneous diseases with overlapping biological mechanisms and often present with co-occurring disease, such as cardiovascular disease (CVD). Gene networks associated with SUDs also implicate additional biological pathways and may be used to stratify disease subtypes. Node and edge arrangements within gene networks impact comparisons between classes of disease, and connectivity metrics, such as those focused on degrees, betweenness, and centrality, do not yield sufficient discernment of disease network classification. Comparatively, the graph spectrum's use of comprehensive information facilitates hypothesis testing and inter-disease clustering by using a larger range of graph characteristics. By adding a connectivity-based method, network rankings of similarity and relationships are explored between classes of SUDs and CVD.

METHODS

Graph spectral clustering's utility is evaluated relative to commonly used network algorithms for discernment between two distinct co-occurring disorders and capacity to rank pathways based on their distinctiveness. A collection of graphs' structures and connectivity to functionally identify the relationship between CVD and each of four classes of SUDs, namely alcohol use disorder (AUD), cocaine use disorder (CUD), nicotine use disorder (NUD), and opioid use disorder (OUD) is evaluated. Moreover, a Kullback-Leibler (KL) divergence is implemented to identify maximally distinctive genes ( ). The emphasis of genes with high enables a Jaccard similarity ranking of pathway distinctiveness, creating a functional "network fingerprint".

RESULTS

Spectral graph outperforms other connectivity-based approaches and reveals interesting observations about the relationship among SUDs. Between CUD and CVD, the gamma-aminobutyric acidergic and arginine metabolism pathways are distinctive. The neurodegenerative prion disease and tyrosine metabolism are emphasized between OUD and CVD. The graph spectrum between AUD and NUD to CVD is not significantly divergent.

CONCLUSION

Graph spectral clustering with KL divergence illustrates differences among SUDs with respect to their relationship to CVD, suggesting that despite a high-level co-occurring diagnosis or comorbidity, the nature of the relationship between SUD and CVD varies depending on the substance involved. The graph clustering method simultaneously provides insight into the specific biological pathways underlying these distinctions and may reveal future basic and clinical research avenues into addressing the cardiovascular sequelae of SUD.

摘要

引言

物质使用障碍(SUDs)是具有重叠生物学机制的异质性疾病,常伴有共病,如心血管疾病(CVD)。与SUDs相关的基因网络还涉及其他生物学途径,可用于对疾病亚型进行分层。基因网络中的节点和边排列会影响疾病类别之间的比较,而诸如度、介数和中心性等连通性指标并不能充分区分疾病网络分类。相比之下,图谱通过使用更广泛的图特征,利用综合信息促进假设检验和疾病间聚类。通过添加基于连通性的方法,探索了SUDs类别与CVD之间的网络相似性和关系排名。

方法

相对于常用的网络算法,评估图谱聚类在区分两种不同的共病障碍以及根据途径的独特性对途径进行排名方面的效用。评估了一组图的结构和连通性,以功能识别CVD与四类SUDs(即酒精使用障碍(AUD)、可卡因使用障碍(CUD)、尼古丁使用障碍(NUD)和阿片类物质使用障碍(OUD))中每一类之间的关系。此外,实施了库尔贝克-莱布勒(KL)散度以识别最大独特基因( )。对具有高 的基因的强调使得能够对途径独特性进行杰卡德相似性排名,从而创建一个功能性的“网络指纹”。

结果

谱图优于其他基于连通性的方法,并揭示了关于SUDs之间关系有趣的观察结果。在CUD和CVD之间,γ-氨基丁酸能和精氨酸代谢途径是独特的。在OUD和CVD之间,神经退行性朊病毒病和酪氨酸代谢受到强调。AUD和NUD与CVD之间的图谱没有显著差异。

结论

具有KL散度的图谱聚类说明了SUDs与CVD关系方面的差异,表明尽管存在高水平的共病诊断或合并症,但SUD与CVD之间关系的性质因所涉及的物质而异。图聚类方法同时提供了对这些差异背后特定生物学途径的见解,并可能揭示未来解决SUD心血管后遗症的基础和临床研究途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bf9/12321874/175b34a6947a/fnins-19-1572243-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验