Suppr超能文献

一种用于膝关节活动范围(ROM)评估的人工智能驱动的视频测角仪:与传统测角法相比的可靠性和有效性。

An AI-driven video based goniometer for knee joint range of motion (ROM) Assessment: Reliability and validity compared to traditional goniometry.

作者信息

Koul Meenakshi, Thanki Rohit, Koul Rohit, Fujarski Sam, Radhakrishnan Sanjay, Jodbhavi Shivangi

机构信息

DetMedX, Wolfsburg, Germany.

出版信息

Comput Biol Med. 2025 Sep;196(Pt B):110848. doi: 10.1016/j.compbiomed.2025.110848. Epub 2025 Aug 5.

Abstract

BACKGROUND

Accurate measurement of knee joint range of motion (ROM) is crucial in clinical and rehabilitation settings. Traditional goniometry, which is widely used, requires calibration and is subject to human errors and measurement inconsistencies. This study introduces an AI-driven video-based goniometer and evaluates its reliability and validity compared to traditional goniometry.

METHODS

This study used a cross-sectional design in an office-based setting to test a novel video-based and AI-supported software (DETROM). ROM data for knee flexion and extension were collected from 26 healthy individuals, aged 24 to 43, with weights ranging from 52 to 124 kg, heights ranging from 1.49 to 1.92 m, and BMIs ranging from 20.32 to 36.03. Each participant's right knee range of motion (ROM) in flexion and extension was measured three times using DETROM and once using a universal goniometer (UG) by an experienced physiotherapist. DETROM utilizes a deep-learning model for pose estimation to calculate joint angles. Intrarater-reliability was assessed using the intraclass correlation coefficient (ICC), and validity was evaluated through Bland-Altman analysis.

RESULTS

DETROM demonstrated excellent reliability for knee flexion and extension, with ICC values of 0.98 and 0.87, respectively. The Bland-Altman analysis revealed a mean difference of -3.50° for flexion and 0.78° for extension between the two methods, indicating good agreement.

CONCLUSIONS

DETROM provides reliable and valid measurements of knee ROM, comparable to traditional goniometry. This technology offers a noninvasive, user-friendly, and accessible tool for clinicians and patients, potentially enhancing rehabilitation care and facilitating remote assessments.

摘要

背景

在临床和康复环境中,准确测量膝关节活动范围(ROM)至关重要。广泛使用的传统角度测量法需要校准,且容易出现人为误差和测量不一致的情况。本研究引入了一种人工智能驱动的基于视频的角度测量仪,并与传统角度测量法相比,评估其可靠性和有效性。

方法

本研究采用基于办公室环境的横断面设计,以测试一种新型的基于视频且由人工智能支持的软件(DETROM)。从26名年龄在24至43岁之间的健康个体收集膝关节屈伸的ROM数据,其体重范围为52至124千克,身高范围为1.49至1.92米,体重指数范围为20.32至36.03。每位参与者右膝关节屈伸的活动范围(ROM)使用DETROM测量三次,并由经验丰富的物理治疗师使用通用角度测量仪(UG)测量一次。DETROM利用深度学习模型进行姿势估计以计算关节角度。使用组内相关系数(ICC)评估评分者内信度,并通过Bland-Altman分析评估效度。

结果

DETROM在膝关节屈伸方面表现出出色的可靠性,ICC值分别为0.98和0.87。Bland-Altman分析显示,两种方法在屈曲时的平均差异为-3.50°,伸展时为0.78°,表明一致性良好。

结论

DETROM提供与传统角度测量法相当的可靠且有效的膝关节ROM测量。这项技术为临床医生和患者提供了一种无创、用户友好且易于使用的工具,可能会改善康复护理并便于进行远程评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验