Suppr超能文献

CMFF:用于稳健点云补全的跨模态特征融合网络。

CMFF: Cross-modal feature fusion network for robust point cloud completion.

作者信息

Gao Jian, Zhang Yuhe, Zhou Pengbo, Liu Xinda, Yan Longquan, Zhou Mingquan, Geng Guohua

机构信息

College of Information Science and Technology, Northwest University, Xi'an, 710127, China.

School of Arts and Communication, Beijing Normal University, Beijing, China.

出版信息

Neural Netw. 2025 Aug 5;192:107930. doi: 10.1016/j.neunet.2025.107930.

Abstract

In the field of 3D vision, point cloud data often suffers from partial missing regions due to occlusion, reflection, or viewpoint limitations, which severely affects downstream tasks. Existing cross modal point cloud completion methods directly employ cross attention mechanisms for feature fusion, without considering the feature distributions and noise between different modalities, leading to suboptimal completion results. In this paper, we propose a novel cross modal point cloud completion framework, CMFF, which takes partial point clouds and single view images as inputs. Specifically, firstly, it uses a point cloud encoder and an image encoder to extract features from the input. In the point cloud encoder, we propose a differential point transformer module for extracting local geometric details and global structural features of the point cloud, which enhances the representation and robustness of complex geometries. Second, we propose a differential cross transformer module for feature fusion. The redundant and conflicting cross modal features are filtered by differential operations to enhance the correlation of cross modal features and improve the completion accuracy. Third, coarse point cloud is generated using a point cloud patch generator. Finally, we propose the fine point cloud module, which optimizes multi modal features using simple attention mechanism and generates an offset vector to optimize the point cloud. Extensive experiments on the view-guided point cloud completion benchmark ShapeNet-ViPC and the Terracotta Warriors dataset show that CMFF outperforms 15 current methods to state-of-the-art on several point cloud completion metrics, exhibiting excellent performance and generalization ability.

摘要

在三维视觉领域,点云数据常常因遮挡、反射或视角限制而存在部分缺失区域,这严重影响了下游任务。现有的跨模态点云补全方法直接采用交叉注意力机制进行特征融合,而未考虑不同模态之间的特征分布和噪声,导致补全结果欠佳。在本文中,我们提出了一种新颖的跨模态点云补全框架CMFF,它将部分点云和单视图图像作为输入。具体而言,首先,它使用点云编码器和图像编码器从输入中提取特征。在点云编码器中,我们提出了一种差分点变换器模块,用于提取点云的局部几何细节和全局结构特征,增强了复杂几何形状的表示能力和鲁棒性。其次,我们提出了一种差分交叉变换器模块用于特征融合。通过差分操作过滤冗余和冲突的跨模态特征,增强跨模态特征的相关性并提高补全精度。第三,使用点云块生成器生成粗点云。最后,我们提出了精细点云模块,它使用简单注意力机制优化多模态特征并生成偏移向量以优化点云。在视图引导的点云补全基准ShapeNet-ViPC和兵马俑数据集上进行的大量实验表明,CMFF在多个点云补全指标上优于15种当前方法,达到了当前最优水平,展现出卓越的性能和泛化能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验