Suen Dawson Wai-Shun, Li Chi-Ying Vanessa, Sun Xingye, Chen Jiajun, Yang Chunzhen, Qiu Ming, Lu Xiao-Ying, Wang Bin, Niu Songyan, Liu Wei, Tsang Chi-Wing
Department of Construction, Environment & Engineering, Technological and Higher Education Institute of Hong Kong (THEi), Hong Kong 999077, China.
College of Physical Science and Technology, Central China Normal University, 430079, PR China.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 3):138560. doi: 10.1016/j.jcis.2025.138560. Epub 2025 Jul 30.
Progress towards a hydrogen economy depends on green and efficient ways to produce hydrogen. A promising route is the catalytic hydrolysis of ammonia borane (AB). To address challenges in catalyst performance and cost for AB hydrolysis, we developed a structurally tuned heterogeneous non-precious metal catalyst based on cobalt (Co) and copper (Cu). Through a controlled pyrolysis procedure, we synthesised a material comprising CoCu nanoclusters (NCs) embedded on nitrogen-doped carbon nanotubes whose walls anchored single metal atoms (M-N-CNTs; M = Co, Cu, or CoCu dual atoms). This strategy synergises the well-known strengths of NCs and single atom catalysts (SACs): as confirmed by density functional theory calculations, with the aid of Co/Cu single atoms (SAs) anchored on the CNT, the adsorption of AB on the CoCu NCs increases significantly, while the anchoring of dual CoCu SAs into CNTs strengthens the adsorption of water on the CoCu SA and NC active sites. These phenomena enhance the catalytic performance through cooperative effects between SAs and NCs, facilitating bond breaking in water and AB. We thus achieved an effective specific hydrogen generation rate of 41,974 mL⋅g⋅min and an effective turnover frequency of 71.21 mol⋅mol⋅min, with a low activation energy of 22.0 kJ⋅mol. Furthermore, the catalyst boasts high stability and recyclability, as the enhanced metal-support interactions minimise the leaching and agglomeration of NCs. This study demonstrates the application of the combined SA/NC strategy for AB hydrolysis while providing theoretical and experimental insights into the roles of SAs and NCs in non-precious metal-catalysed hydrogen release reactions.
氢经济的发展取决于绿色高效的制氢方法。一条有前景的途径是氨硼烷(AB)的催化水解。为应对AB水解中催化剂性能和成本方面的挑战,我们开发了一种基于钴(Co)和铜(Cu)的结构调谐非贵金属多相催化剂。通过可控热解过程,我们合成了一种材料,该材料包含嵌入氮掺杂碳纳米管的CoCu纳米团簇(NCs),其管壁锚定有单金属原子(M-N-CNTs;M = Co、Cu或CoCu双原子)。该策略将NCs和单原子催化剂(SACs)的优势协同起来:正如密度泛函理论计算所证实的,借助锚定在碳纳米管上的Co/Cu单原子(SAs),AB在CoCu NCs上的吸附显著增加,而双CoCu SAs锚定到碳纳米管中则增强了水在CoCu SA和NC活性位点上的吸附。这些现象通过SAs和NCs之间的协同效应提高了催化性能,促进了水和AB中的键断裂。因此,我们实现了41,974 mL⋅g⋅min的有效比产氢速率和71.21 mol⋅mol⋅min的有效周转频率,活化能低至22.0 kJ⋅mol。此外,该催化剂具有高稳定性和可回收性,因为增强的金属-载体相互作用使NCs的浸出和团聚最小化。本研究展示了SA/NC组合策略在AB水解中的应用,同时为SAs和NCs在非贵金属催化的氢释放反应中的作用提供了理论和实验见解。