Suppr超能文献

干旱通过降低微生物多样性限制了微塑料对土壤温室气体排放的影响。

Drought limits microplastic effects on soil greenhouse gas emissions by reducing microbial diversity.

作者信息

Wang Jianling, Liu Huanhuan, Zeb Aurang, Wang Qi, Mo Fan, Shi Ruiying, Zhao Yuexing, Yin Chuan, Song Zhengguo, Liu Weitao

机构信息

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.

Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China.

出版信息

J Environ Manage. 2025 Sep;392:126843. doi: 10.1016/j.jenvman.2025.126843. Epub 2025 Aug 5.

Abstract

Extreme droughts and microplastics (MPs) accumulation in agricultural soils threaten ecosystem sustainability. We examined the impact of MPs and drought stress on greenhouse gas (GHG) emissions, along with the transformation patterns of carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) functional genes, and microbial communities in agricultural soils. This study aims to explore how the interaction between different types of MPs and drought stress modulates soil properties, microbial dynamics, enzymatic activities, and ultimately influences soil GHG emissions. Compared to conventional polyethylene (PE) MPs, biodegradable polybutylene succinate (PBS) MPs enhanced the generation of nitrous oxide (NO), yet drought conditions consistently suppressed overall GHG fluxes. The activities of soil enzymes associated with C, N, P, and S cycling were influenced by the type of MPs, drought, and soil properties. Notably, combined exposure to MPs and drought substantially altered soil metabolic profiles. PBS MPs under drought caused greater bacterial diversity loss and dominant taxa shifts than PE MPs. GHG emissions correlated with soil NH-N, pH, dissolved organic carbon, and electrical conductivity, driven by carbon degradation, methane metabolism, and phosphorus cycling functional genes. This study highlights the interplay between MPs and drought in shaping GHG emissions and nutrient cycling, offering valuable insights for the management of alternative plastic use in sustainable soil management practices.

摘要

极端干旱和农业土壤中微塑料(MPs)的积累威胁着生态系统的可持续性。我们研究了微塑料和干旱胁迫对温室气体(GHG)排放的影响,以及农业土壤中碳(C)、氮(N)、磷(P)和硫(S)功能基因的转化模式和微生物群落。本研究旨在探讨不同类型的微塑料与干旱胁迫之间的相互作用如何调节土壤性质、微生物动态、酶活性,并最终影响土壤温室气体排放。与传统的聚乙烯(PE)微塑料相比,可生物降解的聚丁二酸丁二醇酯(PBS)微塑料增加了一氧化二氮(NO)的产生,但干旱条件持续抑制了总体温室气体通量。与碳、氮、磷和硫循环相关的土壤酶活性受微塑料类型、干旱和土壤性质的影响。值得注意的是,微塑料和干旱的联合暴露显著改变了土壤代谢谱。干旱条件下的PBS微塑料比PE微塑料导致更大的细菌多样性丧失和优势类群转移。温室气体排放与土壤铵态氮、pH值、溶解有机碳和电导率相关,由碳降解、甲烷代谢和磷循环功能基因驱动。本研究强调了微塑料和干旱在塑造温室气体排放和养分循环方面的相互作用,为可持续土壤管理实践中替代塑料的使用管理提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验