Suppr超能文献

SemiSAM+:基础模型时代下对半监督医学图像分割的重新思考

SemiSAM+: Rethinking semi-supervised medical image segmentation in the era of foundation models.

作者信息

Zhang Yichi, Lv Bohao, Xue Le, Zhang Wenbo, Liu Yuchen, Fu Yu, Cheng Yuan, Qi Yuan

机构信息

Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China; Shanghai Academy of Artificial Intelligence for Science, Shanghai, China.

Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China.

出版信息

Med Image Anal. 2025 Dec;106:103733. doi: 10.1016/j.media.2025.103733. Epub 2025 Jul 25.

Abstract

Deep learning-based medical image segmentation typically requires large amount of labeled data for training, making it less applicable in clinical settings due to high annotation cost. Semi-supervised learning (SSL) has emerged as an appealing strategy due to its less dependence on acquiring abundant annotations from experts compared to fully supervised methods. Beyond existing model-centric advancements of SSL by designing novel regularization strategies, we anticipate a paradigmatic shift due to the emergence of promptable segmentation foundation models with universal segmentation capabilities using positional prompts represented by Segment Anything Model (SAM). In this paper, we present SemiSAM+, a foundation model-driven SSL framework to efficiently learn from limited labeled data for medical image segmentation. SemiSAM+ consists of one or multiple promptable foundation models as generalist models, and a trainable task-specific segmentation model as specialist model. For a given new segmentation task, the training is based on the specialist-generalist collaborative learning procedure, where the trainable specialist model delivers positional prompts to interact with the frozen generalist models to acquire pseudo-labels, and then the generalist model output provides the specialist model with informative and efficient supervision which benefits the automatic segmentation and prompt generation in turn. Extensive experiments on three public datasets and one in-house clinical dataset demonstrate that SemiSAM+ achieves significant performance improvement, especially under extremely limited annotation scenarios, and shows strong efficiency as a plug-and-play strategy that can be easily adapted to different specialist and generalist models.

摘要

基于深度学习的医学图像分割通常需要大量的标注数据进行训练,由于标注成本高,使得其在临床环境中的适用性较低。与完全监督方法相比,半监督学习(SSL)因其对从专家那里获取大量标注的依赖性较小而成为一种有吸引力的策略。除了通过设计新颖的正则化策略在现有的以模型为中心的SSL进展之外,由于具有通用分割能力的可提示分割基础模型的出现,我们预计会出现范式转变,这些基础模型使用由分割一切模型(SAM)表示的位置提示。在本文中,我们提出了SemiSAM+,这是一个基于基础模型的SSL框架,用于从有限的标注数据中高效学习医学图像分割。SemiSAM+由一个或多个作为通用模型的可提示基础模型和一个可训练的特定任务分割模型作为专家模型组成。对于给定的新分割任务,训练基于专家-通用模型协作学习过程,其中可训练的专家模型提供位置提示以与冻结的通用模型交互以获取伪标签,然后通用模型输出为专家模型提供信息丰富且高效的监督,这反过来又有利于自动分割和提示生成。在三个公共数据集和一个内部临床数据集上进行的广泛实验表明,SemiSAM+实现了显著的性能提升,特别是在极其有限的标注场景下,并且作为一种即插即用策略显示出强大的效率,可以轻松适应不同的专家和通用模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验