Canson Daffodil M, Parsons Michael T, Moir-Meyer Gemma, Dumenil Troy, Montalban Gemma, Lin Erica, McVeigh Terri P, Davidson Aimee L, Bouckaert Shaun M, Trau Matt, Korbie Darren, Spurdle Amanda B
Population Health Program, QIMR Berghofer, Herston, Queensland 4006, Australia.
Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia.
Genome Res. 2025 Sep 2;35(9):2104-2115. doi: 10.1101/gr.279557.124.
and germline variant classification is vital for clinical management of families with hereditary breast and ovarian cancer. However, clinical classification of rare variants outside of the splice donor/acceptor ±1,2-dinucleotides remains challenging, particularly for variants that induce new or cryptic splice site usage. Here, we present SeqSplice a high-throughput RNA splicing methodology utilizing barcoded minigene constructs together with a bespoke bioinformatics pipeline for identifying and quantifying the impacts for splice-altering variants. SeqSplice exhibits excellent reproducibility across cDNA input and PCR cycle differences and is able to identify and quantitate transcripts that differed by a single base. Of the 193 and 72 variants profiled, 89% (237/265) had no publicly available RNA splicing data. Complete or near complete impact owing to splice site gain/loss is observed for 42 variants, with 30 (71%) producing alternative transcripts owing to new or cryptic splice sites. These findings are used to update our aberration type predictor called SpliceAI-10k calculator, resulting in 94% specificity and 90% sensitivity for major alternative transcripts (>50% proportion). Comparison of SeqSplice findings for 28 variants with published data shows the value and limitations of using construct-based results for variant classification. Overall, our findings inform use of construct-derived data for clinical variant classification. We show that construct-derived results for variants showing low or no splicing impact provide reliable evidence against variant pathogenicity, whereas-for variants demonstrating splicing impact-construct design and naturally occurring alternative splicing are important considerations for assigning and weighting evidence towards pathogenicity.
种系变异分类对于遗传性乳腺癌和卵巢癌家族的临床管理至关重要。然而,剪接供体/受体±1,2-二核苷酸以外的罕见变异的临床分类仍然具有挑战性,特别是对于诱导新的或隐蔽的剪接位点使用的变异。在这里,我们介绍SeqSplice,一种高通量RNA剪接方法,利用条形码化的小基因构建体以及定制的生物信息学管道来识别和量化剪接改变变异的影响。SeqSplice在cDNA输入和PCR循环差异方面表现出出色的可重复性,并且能够识别和定量相差单个碱基的转录本。在分析的193个和72个变异中,89%(237/265)没有公开可用的RNA剪接数据。42个变异观察到由于剪接位点获得/丢失而产生的完全或几乎完全的影响,其中30个(71%)由于新的或隐蔽的剪接位点产生了替代转录本。这些发现用于更新我们称为SpliceAI-10k计算器的畸变类型预测器,对于主要替代转录本(比例>50%),特异性为94%,敏感性为90%。将28个变异的SeqSplice结果与已发表数据进行比较,显示了使用基于构建体的结果进行变异分类的价值和局限性。总体而言,我们的发现为临床变异分类中使用基于构建体的数据提供了参考。我们表明,对于显示低剪接影响或无剪接影响的变异,基于构建体的结果提供了反对变异致病性的可靠证据,而对于显示剪接影响的变异,构建体设计和天然存在的替代剪接是在确定致病性证据和权衡证据时的重要考虑因素。