Suppr超能文献

一个包含同步心冲击图、心音、心电图和呼吸信号的心力描记术数据集。

A Forcecardiography dataset with simultaneous SCG, Heart Sounds, ECG, and Respiratory signals.

作者信息

Parlato Salvatore, Centracchio Jessica, Cinotti Eliana, Manzi Maria Virginia, Canciello Grazia, Prastaro Maria, Lembo Maria, Brandwood Benjamin M, Gargiulo Gaetano D, Bifulco Paolo, Esposito Giovanni, Izzo Raffaele, Andreozzi Emilio

机构信息

Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 21, 80125, Naples, Italy.

Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Sergio Pansini, 5, 80131, Naples, Italy.

出版信息

Sci Data. 2025 Aug 6;12(1):1370. doi: 10.1038/s41597-025-05694-2.

Abstract

FOSTER is the first ever publicly available dataset of forcecardiography (FCG) signals with simultaneous recordings of conventional seismocardiography (SCG), phonocardiography (PCG), electrocardiography (ECG), and respiratory signals. The dataset contains recordings from 40 participants (20 males and 20 females) and aims to foster and facilitate research on non-invasive cardio-respiratory monitoring using mechanical sensors. All signals were acquired simultaneously to ensure precise temporal alignment for accurate analysis. Each recording lasts about 7 minutes and includes both long phases of quiet breathing and short phases of inspiratory and expiratory apneas. The open accessibility of the FOSTER dataset aims to facilitate advancements in unobtrusive cardio-respiratory patient monitoring, support the development of novel diagnostic tools and algorithms to detect specific events of the cardiac and respiratory cycles, and help researchers to explore the potential of combined electrical and mechanical cardiac monitoring.

摘要

FOSTER是首个公开可用的心力图(FCG)信号数据集,同时记录了传统心震图(SCG)、心音图(PCG)、心电图(ECG)和呼吸信号。该数据集包含40名参与者(20名男性和20名女性)的记录,旨在促进和推动使用机械传感器进行无创心肺监测的研究。所有信号均同时采集,以确保精确的时间对齐以便进行准确分析。每次记录持续约7分钟,包括长时间的安静呼吸阶段以及吸气和呼气暂停的短阶段。FOSTER数据集的开放获取旨在促进无创心肺患者监测方面的进展,支持开发用于检测心脏和呼吸周期特定事件的新型诊断工具和算法,并帮助研究人员探索联合心电和心机械监测的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c31c/12328590/064471d47829/41597_2025_5694_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验