Suppr超能文献

同步采集和处理心电图和心音图信号,用于在心脏病诊断和监测中准确测量收缩期时间

Synchronous Acquisition and Processing of Electro- and Phono-Cardiogram Signals for Accurate Systolic Times' Measurement in Heart Disease Diagnosis and Monitoring.

作者信息

De Fazio Roberto, Cascella Ilaria, Yalçınkaya Şule Esma, De Vittorio Massimo, Patrono Luigi, Velazquez Ramiro, Visconti Paolo

机构信息

Department of Innovation Engineering, University of Salento, Road to Monteroni, Building 'O', 73100 Lecce, Italy.

Facultad de Ingeniería, Universidad Panamericana, Aguascalientes 20296, Mexico.

出版信息

Sensors (Basel). 2025 Jul 6;25(13):4220. doi: 10.3390/s25134220.

Abstract

Cardiovascular diseases remain one of the leading causes of mortality worldwide, highlighting the importance of effective monitoring and early diagnosis. While electrocardiography (ECG) is the standard technique for evaluating the heart's electrical activity and detecting rhythm and conduction abnormalities, it alone is insufficient for identifying certain conditions, such as valvular disorders. Phonocardiography (PCG) allows the recording and analysis of heart sounds and improves the diagnostic accuracy when combined with ECG. In this study, ECG and PCG signals were simultaneously acquired from a resting adult subject using a compact system comprising an analog front-end (model AD8232, manufactured by Analog Devices, Wilmington, MA, USA) for ECG acquisition and a digital stethoscope built around a condenser electret microphone (model HM-9250, manufactured by HMYL, Anqing, China). Both the ECG electrodes and the microphone were positioned on the chest to ensure the spatial alignment of the signals. An adaptive segmentation algorithm was developed to segment PCG and ECG signals based on their morphological and temporal features. This algorithm identifies the onset and peaks of S1 and S2 heart sounds in the PCG and the Q, R, and S waves in the ECG, enabling the extraction of the systolic time intervals such as EMAT, PEP, LVET, and LVST parameters proven useful in the diagnosis and monitoring of cardiovascular diseases. Based on the segmented signals, the measured averages (EMAT = 74.35 ms, PEP = 89.00 ms, LVET = 244.39 ms, LVST = 258.60 ms) were consistent with the reference standards, demonstrating the reliability of the developed method. The proposed algorithm was validated on synchronized ECG and PCG signals from multiple subjects in an open-source dataset (BSSLAB Localized ECG Data). The systolic intervals extracted using the proposed method closely matched the literature values, confirming the robustness across different recording conditions; in detail, the mean Q-S1 interval was 40.45 ms (≈45 ms reference value, mean difference: -4.85 ms, LoA: -3.42 ms and -6.09 ms) and the R-S1 interval was 14.09 ms (≈15 ms reference value, mean difference: -1.2 ms, LoA: -0.55 ms and -1.85 ms). In conclusion, the results demonstrate the potential of the joint ECG and PCG analysis to improve the long-term monitoring of cardiovascular diseases.

摘要

心血管疾病仍然是全球主要的死亡原因之一,这凸显了有效监测和早期诊断的重要性。虽然心电图(ECG)是评估心脏电活动以及检测节律和传导异常的标准技术,但仅靠它不足以识别某些病症,如瓣膜疾病。心音图(PCG)可以记录和分析心音,与心电图结合使用时可提高诊断准确性。在本研究中,使用一个紧凑系统从一名静息成年受试者身上同时采集了心电图和心音图信号,该系统包括一个用于采集心电图的模拟前端(型号AD8232,由美国马萨诸塞州威尔明顿的亚德诺半导体公司制造)和一个围绕驻极体电容式麦克风(型号HM - 9250,由中国安庆的华敏医疗制造)构建的数字听诊器。心电图电极和麦克风均放置在胸部,以确保信号的空间对齐。开发了一种自适应分割算法,根据心电图和心音图信号的形态和时间特征对其进行分割。该算法可识别心音图中S1和S2心音的起始点和峰值以及心电图中的Q、R和S波,从而能够提取诸如射血前期(EMAT)、射血前期(PEP)、左室射血时间(LVET)和左室射血时间(LVST)等收缩期时间间隔参数,这些参数已被证明对心血管疾病的诊断和监测有用。基于分割后的信号,测量的平均值(EMAT = 74.35毫秒,PEP = 89.00毫秒,LVET = 244.39毫秒,LVST = 258.60毫秒)与参考标准一致,证明了所开发方法的可靠性。所提出的算法在一个开源数据集(BSSLAB局部心电图数据)中对来自多个受试者的同步心电图和心音图信号进行了验证。使用所提出的方法提取的收缩期时间间隔与文献值密切匹配,证实了该方法在不同记录条件下的稳健性;具体而言,平均Q - S1间隔为40.45毫秒(≈45毫秒参考值,平均差异:-4.85毫秒,一致性界限:-3.42毫秒和-6.09毫秒),R - S1间隔为14.09毫秒(≈15毫秒参考值,平均差异:-1.兹,一致性界限:-0.55毫秒和-1.85毫秒)。总之,结果表明联合心电图和心音图分析在改善心血管疾病长期监测方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcbb/12252480/96a96e6eae54/sensors-25-04220-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验