Suppr超能文献

跨物种比较揭示了阻止胶质母细胞瘤进展的治疗脆弱性。

Cross-species comparison reveals therapeutic vulnerabilities halting glioblastoma progression.

作者信息

Foerster Leo Carl, Kaya Oguzhan, Wüst Valentin, Danciu Diana-Patricia, Akcay Vuslat, Bekavac Milica, Ziegler Kevin Chris, Stinchcombe Nina, Tang Anna, Kleber Susanne, Tang Joceyln, Brunken Jan, Lois-Bermejo Irene, Gesteira-Perez Noelia, Ma Xiujian, Sadik Ahmed, Le Phuong Uyen, Petrecca Kevin, Opitz Christiane A, Liu Haikun, Wirtz Christian Rainer, Goncalves Angela, Marciniak-Czochra Anna, Anders Simon, Martin-Villalba Ana

机构信息

Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Combined Faculty of Mathematics, Engineering and Natural Sciences, University of Heidelberg, Heidelberg, Germany.

出版信息

Nat Commun. 2025 Aug 6;16(1):7250. doi: 10.1038/s41467-025-62528-w.

Abstract

The growth of a tumor is tightly linked to the distribution of its cells along a continuum of activation states. Here, we systematically decode the activation state architecture (ASA) in a glioblastoma (GBM) patient cohort through comparison to adult murine neural stem cells. Modelling of these data forecasts how tumor cells organize to sustain growth and identifies the rate of activation as the main predictor of growth. Accordingly, patients with a higher quiescence fraction exhibit improved outcomes. Further, DNA methylation arrays enable ASA-related patient stratification. Comparison of healthy and malignant gene expression dynamics reveals dysregulation of the Wnt-antagonist SFRP1 at the quiescence to activation transition. SFRP1 overexpression renders GBM quiescent and increases the overall survival of tumor-bearing mice. Surprisingly, it does so through reprogramming the tumor's stem-like methylome into an astrocyte-like one. Our findings offer a framework for patient stratification with prognostic value, biomarker identification, and therapeutic avenues to halt GBM progression.

摘要

肿瘤的生长与肿瘤细胞沿连续激活状态的分布紧密相关。在此,我们通过与成年小鼠神经干细胞进行比较,系统地解码了胶质母细胞瘤(GBM)患者队列中的激活状态架构(ASA)。对这些数据的建模预测了肿瘤细胞如何组织以维持生长,并将激活率确定为生长的主要预测指标。因此,静止分数较高的患者预后较好。此外,DNA甲基化阵列可实现与ASA相关的患者分层。健康与恶性基因表达动态的比较揭示了Wnt拮抗剂SFRP1在静止向激活转变过程中的失调。SFRP1过表达使GBM静止,并提高了荷瘤小鼠的总生存率。令人惊讶的是,它是通过将肿瘤的干细胞样甲基化组重编程为星形胶质细胞样甲基化组来实现的。我们的研究结果为具有预后价值的患者分层、生物标志物识别以及阻止GBM进展的治疗途径提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139c/12329047/4a159eb3eec1/41467_2025_62528_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验