Sumanaweera Dinithi, Suo Chenqu, Cujba Ana-Maria, Muraro Daniele, Dann Emma, Polanski Krzysztof, Steemers Alexander S, Lee Woochan, Oliver Amanda J, Park Jong-Eun, Meyer Kerstin B, Dumitrascu Bianca, Teichmann Sarah A
Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK.
Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
Nat Methods. 2025 Jan;22(1):68-81. doi: 10.1038/s41592-024-02378-4. Epub 2024 Sep 19.
Single-cell data analysis can infer dynamic changes in cell populations, for example across time, space or in response to perturbation, thus deriving pseudotime trajectories. Current approaches comparing trajectories often use dynamic programming but are limited by assumptions such as the existence of a definitive match. Here we describe Genes2Genes, a Bayesian information-theoretic dynamic programming framework for aligning single-cell trajectories. It is able to capture sequential matches and mismatches of individual genes between a reference and query trajectory, highlighting distinct clusters of alignment patterns. Across both real world and simulated datasets, it accurately inferred alignments and demonstrated its utility in disease cell-state trajectory analysis. In a proof-of-concept application, Genes2Genes revealed that T cells differentiated in vitro match an immature in vivo state while lacking expression of genes associated with TNF signaling. This demonstrates that precise trajectory alignment can pinpoint divergence from the in vivo system, thus guiding the optimization of in vitro culture conditions.
单细胞数据分析可以推断细胞群体的动态变化,例如随时间、空间的变化或对扰动的响应,从而得出伪时间轨迹。当前比较轨迹的方法通常使用动态规划,但受到诸如存在明确匹配等假设的限制。在这里,我们描述了Genes2Genes,这是一种用于比对单细胞轨迹的贝叶斯信息论动态规划框架。它能够捕捉参考轨迹和查询轨迹之间单个基因的顺序匹配和不匹配,突出显示不同的比对模式簇。在真实世界和模拟数据集上,它都能准确推断比对情况,并证明了其在疾病细胞状态轨迹分析中的效用。在一个概念验证应用中,Genes2Genes显示,体外分化的T细胞与体内不成熟状态匹配,但缺乏与TNF信号传导相关的基因表达。这表明精确的轨迹比对可以确定与体内系统的差异,从而指导体外培养条件的优化。