Kiran Neelakanta Sarvashiva, Yashaswini Chandrashekar, Chatterjee Ankita, Prajapati Bhupendra
Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, 560064, India.
Center for Molecular Biology and Biotechnology, REVA Research Center, REVA University, Bengaluru, Karnataka, 560064, India.
Med Oncol. 2025 Aug 6;42(9):412. doi: 10.1007/s12032-025-02972-2.
Gastrointestinal dysbiosis, characterized as a pathological imbalance in gut microbial composition and function, has been increasingly implicated in the aetiology of various systemic diseases, including neurological malignancies. This review illustrates the mechanistic link between dysbiosis and aberrant tryptophan metabolism, highlighting their convergence in the pathogenesis of neuro-oncological disorders. Tryptophan, a critical precursor for bioactive metabolites such as serotonin and kynurenine, undergoes extensive microbial and host-mediated catabolism. Dysbiosis disrupts these metabolic pathways, leading to altered neurotransmitter biosynthesis, heightened oxidative stress, dysregulated neuroinflammation, and perturbations in immune surveillance-all of which contribute to tumour initiation and progression within the central nervous system (CNS). Furthermore, dysregulated kynurenine pathway activation fosters an immunosuppressive tumour microenvironment (TME) through aryl hydrocarbon receptor (AhR) signalling, facilitating immune evasion and malignancy. The review systematically explores the molecular and cellular mechanisms by which gut microbial imbalances modulate tryptophan catabolism and its downstream effects on neuroimmune dynamics, oncogenic signalling cascades, and blood-brain barrier integrity. Emphasis is placed on emerging therapeutic strategies targeting the microbiota-tryptophan axis, including microbiome modulation, enzymatic inhibitors, and metabolic reprogramming approaches. By elucidating the crosstalk between gastrointestinal dysbiosis and tryptophan metabolism, we identify molecular entry points for intervention in neuro-oncology. Progress will require coordinated work across microbiology, immunology, oncology, and neurobiology to develop microbiome-targeted strategies for neurological malignancies.
胃肠道微生物群失调,其特征为肠道微生物组成和功能的病理失衡,越来越多地被认为与包括神经恶性肿瘤在内的各种全身性疾病的病因有关。这篇综述阐述了微生物群失调与色氨酸代谢异常之间的机制联系,强调了它们在神经肿瘤疾病发病机制中的共同作用。色氨酸是血清素和犬尿氨酸等生物活性代谢物的关键前体,会经历广泛的微生物介导和宿主介导的分解代谢。微生物群失调会破坏这些代谢途径,导致神经递质生物合成改变、氧化应激加剧、神经炎症失调以及免疫监视紊乱,所有这些都有助于中枢神经系统(CNS)内肿瘤的发生和进展。此外,犬尿氨酸途径的激活失调通过芳烃受体(AhR)信号传导促进免疫抑制性肿瘤微环境(TME)的形成,从而促进免疫逃逸和肿瘤恶化。该综述系统地探讨了肠道微生物失衡调节色氨酸分解代谢的分子和细胞机制及其对神经免疫动力学、致癌信号级联反应和血脑屏障完整性的下游影响。重点是针对微生物群 - 色氨酸轴的新兴治疗策略,包括微生物群调节、酶抑制剂和代谢重编程方法。通过阐明胃肠道微生物群失调与色氨酸代谢之间的相互作用,我们确定了神经肿瘤学干预的分子切入点。要取得进展,需要微生物学、免疫学、肿瘤学和神经生物学领域的协同工作,以开发针对神经恶性肿瘤的微生物群靶向策略。