Wu Lei, Liu Fan, Li Sisi, Luo Xinyi, Wang Yishi, Zhong Wen, Feiweier Thorsten, Xu Junzhong, Bao Haihua, Shi Diwei, Guo Hua
Qinghai University Affiliated Hospital, Xining, China.
Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China.
Radiol Oncol. 2025 Aug 6;59(3):337-348. doi: 10.2478/raon-2025-0044. eCollection 2025 Sep 1.
First evaluation of the performance of MR cytometry incorporating transcytolemmal water exchange in predicting immunohistochemical factor status and molecular subtypes of breast cancer.
We prospectively enrolled 90 breast cancer patients in the study. For each participant, pulsed gradient spin-echo (PGSE) with diffusion time of 70 ms and oscillating gradient spin-echo (OGSE) diffusion-weighted imaging of 25 Hz and 50 Hz were performed on a 3T MRI scanner. Time-dependent apparent diffusion coefficients (ADC) and microstructural parameters including cell diameter , intracellular volume fraction , water exchange rate constant , and apparent extracellular diffusivity were calculated. Single- and multi-variable logistic regression analyses were performed to evaluate their performance in identifying immunohistochemistry (IHC) factor status and molecular subtypes. The area under the receiver operating characteristic curve (AUC) was computed.
The multi-variable regression models generated from MR cytometry-derived metrics provided higher AUC compared to those from time-dependent ADC metrics, . 0.744 . 0.645 for estrogen receptor (ER), 0.727 . 0.688 for progesterone receptor (PR), 0.734 .0.623 for HER2, and 0.679 . 0.633 for Ki67, 0.751 . 0.644 for Triple-Negative Breast Cancer (TNBC), 0.819 . 0.765 for HER2-enriched, 0.730 . 0.659 for Luminal A, 0.633 . 0.633 for Luminal B. MR cytometry with transcytolemmal water exchange (JOINT and EXCHANGE) outperformed the original one with the impermeable model (IMPULSED) in predicting PR (0.727 . 0.705), HER2 (0.734 . 0.689), Ki67 (0.679 . 0.646), TNBC (0.751 . 0.748) and HER2-enriched (0.819 . 0.739), Luminal A (0.730 . 0.666), Luminal B (0.633 . 0.630).
MR cytometry outperformed conventional ADC measurements in clinical breast cancer subtyping. Incorporating transcytolemmal water exchange further enhanced classification accuracy.
首次评估结合跨细胞膜水交换的磁共振细胞术在预测乳腺癌免疫组化因子状态和分子亚型方面的性能。
我们前瞻性地招募了90名乳腺癌患者参与本研究。对每位参与者,在3T磁共振成像扫描仪上进行扩散时间为70毫秒的脉冲梯度自旋回波(PGSE)以及频率为25赫兹和50赫兹的振荡梯度自旋回波(OGSE)扩散加权成像。计算时间依赖性表观扩散系数(ADC)以及包括细胞直径、细胞内体积分数、水交换速率常数和表观细胞外扩散率在内的微观结构参数。进行单变量和多变量逻辑回归分析,以评估它们在识别免疫组化(IHC)因子状态和分子亚型方面的性能。计算受试者操作特征曲线(AUC)下的面积。
与基于时间依赖性ADC指标生成的多变量回归模型相比,由磁共振细胞术得出的指标生成的多变量回归模型提供了更高的AUC,雌激素受体(ER)为0.744对0.645,孕激素受体(PR)为0.727对0.688,人表皮生长因子受体2(HER2)为0.734对0.623,Ki67为0.679对0.633,三阴性乳腺癌(TNBC)为0.751对0.644,HER2富集型为0.819对0.765,管腔A型为0.730对0.659,管腔B型为0.633对0.633。在预测PR(0.727对0.705)、HER2(0.734对0.689)、Ki67(0.679对0.646)、TNBC(0.751对0.748)、HER2富集型(0.819对0.739)、管腔A型(0.730对0.666)和管腔B型(0.633对0.630)方面,结合跨细胞膜水交换的磁共振细胞术(JOINT和EXCHANGE)优于采用不可渗透模型(IMPULSED)的原始方法。
在临床乳腺癌亚型分类中,磁共振细胞术优于传统的ADC测量。纳入跨细胞膜水交换进一步提高了分类准确性。