Horne Julia Elizabeth, Goldblatt Colin, Kump Lee
School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada.
Department of Geosciences, The Pennsylvania State University, University Park, PA, USA.
Philos Trans R Soc Lond B Biol Sci. 2025 Aug 7;380(1931):20240094. doi: 10.1098/rstb.2024.0094.
The Great Oxidation Event (GOE) was the most significant chemical revolution in Earth's history, occurring 2.4 billion years ago. The metabolism that made this transition possible, oxygenic photosynthesis, may have evolved as early as the Eoarchean (3.5 Ga) and certainly by the end-Archean. A long period with low oxygen was facilitated by rapid atmospheric oxidation reactions prior to ozone layer formation, but the mechanisms controlling the length of the delay remain unknown. In this paper, we use EONS (Earth Oxygenation and Natural Systematics), a new biogeochemical model of the Earth system, to evaluate different scenarios for the evolution of two key metabolic pathways-oxygenic photosynthesis and nitrogen fixation, and inorganic phosphorus cycle boundary conditions to constrain determinants of oxygenation timing. We find, counter-intuitively, that an early origin of oxygenic photosynthesis leads to a longer delay before the GOE, and that the earliest-modelled origins delay the Great Oxidation the longest in absolute terms. The ultimate control over oxygenation delay is phosphorus availability; a strong productivity bottleneck emerges when oxygenic photosynthesis and nitrogen fixation evolve before the accumulation of significant surface phosphorus reservoirs. This bottleneck is perpetuated by strong ocean redox stratification and efficient phosphorus sequestration, which limit primary productivity and hence oxygen accumulation.This article is part of the discussion meeting issue 'Chance and purpose in the evolution of biospheres'.
大氧化事件(GOE)是地球历史上最重大的化学革命,发生在24亿年前。使这一转变成为可能的新陈代谢——氧光合作用,可能早在太古宙早期(35亿年前)就已演化出现,肯定在太古宙末期就已出现。在臭氧层形成之前,快速的大气氧化反应促成了一段低氧的漫长时期,但控制延迟时间长短的机制仍不为人知。在本文中,我们使用地球系统的一种新的生物地球化学模型EONS(地球氧化与自然系统学),来评估两种关键代谢途径——氧光合作用和固氮作用的演化的不同情景,以及无机磷循环边界条件,以确定氧化时间的决定因素。我们发现,与直觉相反的是,氧光合作用的早期起源会导致大氧化事件之前的延迟时间更长,而且从绝对意义上来说,模型中最早的起源会使大氧化事件延迟的时间最长。对氧化延迟的最终控制因素是磷的可利用性;当氧光合作用和固氮作用在大量表层磷库积累之前就已演化出现时,就会出现一个强大的生产力瓶颈。这个瓶颈因强烈的海洋氧化还原分层和有效的磷固存而持续存在,这限制了初级生产力,进而限制了氧气的积累。本文是讨论会文集“生物圈演化中的机遇与目的”的一部分。