Moravveji Seyedadel, Sadia Halima, Doyon Nicolas, Duchesne Simon
Department of Mathematics and Statistics, Université Laval, Quebec, QC, Canada.
Medics Laboratory, Quebec Heart and Lung Institute, Quebec, QC, Canada.
Front Neuroinform. 2025 Jul 23;19:1590968. doi: 10.3389/fninf.2025.1590968. eCollection 2025.
Mathematical models serve as essential tools to investigate brain aging, the onset of Alzheimer's disease (AD) and its progression. By studying the representation of the complex dynamics of brain aging processes, such as amyloid beta (Aβ) deposition, tau tangles, neuro-inflammation, and neuronal death. Sensitivity analyses provide a powerful framework for identifying the underlying mechanisms that drive disease progression. In this study, we present the first local sensitivity analysis of a recent and comprehensive multiscale ODE-based model of Alzheimer's Disease (AD) that originates from our group. As such, it is one of the most complex model that captures the multifactorial nature of AD, incorporating neuronal, pathological, and inflammatory processes at the nano, micro and macro scales. This detailed framework enables realistic simulation of disease progression and identification of key biological parameters that influence system behavior. Our analysis identifies the key drivers of disease progression across patient profiles, providing insight into targeted therapeutic strategies.
We investigated a recent ODE-based model composed of 19 variables and 75 parameters, developed by our group, to study Alzheimer's disease dynamics. We performed single- and paired-parameter sensitivity analyses, focusing on three key outcomes: neural density, amyloid beta plaques, and tau proteins.
Our findings suggest that the parameters related to glucose and insulin regulation could play an important role in neurodegeneration and cognitive decline. Second, the parameters that have the most important impact on cognitive decline are not completely the same depending on sex and APOE status.
These results underscore the importance of incorporating a multifactorial approach tailored to demographic characteristics when considering strategies for AD treatment. This approach is essential to identify the factors that contribute significantly to neural loss and AD progression.
数学模型是研究大脑衰老、阿尔茨海默病(AD)的发病及其进展的重要工具。通过研究大脑衰老过程中复杂动力学的表现,如β淀粉样蛋白(Aβ)沉积、tau蛋白缠结、神经炎症和神经元死亡。敏感性分析为识别驱动疾病进展的潜在机制提供了一个强大的框架。在本研究中,我们对源自我们团队的一个最新的、全面的基于常微分方程(ODE)的阿尔茨海默病多尺度模型进行了首次局部敏感性分析。因此,它是捕捉AD多因素性质的最复杂模型之一,在纳米、微观和宏观尺度上纳入了神经元、病理和炎症过程。这个详细的框架能够对疾病进展进行逼真的模拟,并识别影响系统行为的关键生物学参数。我们的分析确定了不同患者特征下疾病进展的关键驱动因素,为靶向治疗策略提供了见解。
我们研究了由我们团队开发的一个基于ODE的模型,该模型由19个变量和75个参数组成,用于研究阿尔茨海默病的动力学。我们进行了单参数和双参数敏感性分析,重点关注三个关键结果:神经密度、β淀粉样蛋白斑块和tau蛋白。
我们的研究结果表明,与葡萄糖和胰岛素调节相关的参数可能在神经退行性变和认知衰退中起重要作用。其次,对认知衰退影响最重要的参数因性别和APOE状态而异,并不完全相同。
这些结果强调了在考虑AD治疗策略时,采用针对人口统计学特征的多因素方法的重要性。这种方法对于识别对神经损失和AD进展有重大贡献的因素至关重要。