文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用多组学和人工智能:革新肝细胞癌的预后和治疗

Harnessing multi-omics and artificial intelligence: revolutionizing prognosis and treatment in hepatocellular carcinoma.

作者信息

Wang Zhen, Zhou Gangchen, Cao Rongchuan, Zhang Guolin, Zhang Yongxu, Xiao Mingyue, Liu Longbi, Zhang Xuesong

机构信息

Department of Interventional Therapy, Zuanshiwan Campus, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.

Department of Graduate, Dalian Medical University, Dalian, Liaoning, China.

出版信息

Front Immunol. 2025 Jul 23;16:1592259. doi: 10.3389/fimmu.2025.1592259. eCollection 2025.


DOI:10.3389/fimmu.2025.1592259
PMID:40771801
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12325060/
Abstract

BACKGROUND: Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, characterized by elevated mortality rates and heterogeneity. Despite advancements in treatment, the development of personalized therapeutic strategies for HCC remains a substantial challenge due to the intricate molecular characteristics of the disease. A multi-omics approach has the potential to offer more profound insights into HCC subtypes and enhance patient stratification for personalized treatments. METHODS: A comprehensive data set comprising clinical, transcriptomic, genomic and epigenomic information from HCC patients was retrieved from the TCGA, ICGC, GEO and CPTAC databases. To identify distinct molecular subtypes, a multi-omics data integration approach was employed, utilizing 10 distinct clustering algorithms. Survival analysis, immune infiltration profiling and drug sensitivity predictions were then used to evaluate the prognostic significance and therapeutic responses of these subtypes. Furthermore, machine learning models were employed to develop the artificial intelligence-derived risk score (AIDRS) with the aim of predicting patient outcomes and guiding personalized therapy. and vivo experiments were conducted to assess the role of CEP55 in tumor progression. RESULTS: The present study identified two distinct HCC subtypes (CS1 and CS2, respectively), each exhibiting different clinical outcomes and molecular characteristics. CS1 was associated with better overall survival, while CS2 exhibited higher mutation burden and immune suppression. The AIDRS, constructed using a multi-step machine learning approach, effectively predicted patient prognosis across multiple cohorts. High AIDRS score correlated with poor prognosis and a limited response to immunotherapy. Furthermore, the study identified CEP55 as a potential therapeutic target, as it was found to be overexpressed in CS2 and associated with poorer outcomes. experiments confirmed that CEP55 knockdown reduced HCC cell proliferation, migration, and invasion. Moreover, in xenograft models, CEP55 knockdown significantly reduced tumor growth and proliferation. CONCLUSIONS: The integration of multi-omics data has been demonstrated to provide a comprehensive understanding of HCC subtypes, thus enhancing the prediction of prognosis and guiding personalized treatment strategies. The development of the AIDRS offers a robust tool for risk stratification, while CEP55 has emerged as a promising target for therapeutic intervention in HCC.

摘要

背景:肝细胞癌(HCC)是最常见的肝癌形式,其特点是死亡率高且具有异质性。尽管治疗方面取得了进展,但由于该疾病复杂的分子特征,为HCC制定个性化治疗策略仍然是一项重大挑战。多组学方法有可能为HCC亚型提供更深入的见解,并加强患者分层以进行个性化治疗。 方法:从TCGA、ICGC、GEO和CPTAC数据库中检索了一个包含HCC患者临床、转录组、基因组和表观基因组信息的综合数据集。为了识别不同的分子亚型,采用了多组学数据整合方法,使用了10种不同的聚类算法。然后进行生存分析、免疫浸润分析和药物敏感性预测,以评估这些亚型的预后意义和治疗反应。此外,采用机器学习模型开发人工智能衍生风险评分(AIDRS),旨在预测患者预后并指导个性化治疗。并进行体内实验以评估CEP55在肿瘤进展中的作用。 结果:本研究确定了两种不同的HCC亚型(分别为CS1和CS2),每种亚型都表现出不同的临床结果和分子特征。CS1与更好的总生存期相关,而CS2表现出更高的突变负担和免疫抑制。使用多步骤机器学习方法构建的AIDRS有效地预测了多个队列中的患者预后。高AIDRS评分与预后不良和对免疫治疗的反应有限相关。此外,该研究确定CEP55为潜在的治疗靶点,因为发现它在CS2中过度表达并与较差的结果相关。实验证实,敲低CEP55可降低HCC细胞的增殖、迁移和侵袭。此外,在异种移植模型中,敲低CEP55可显著降低肿瘤生长和增殖。 结论:多组学数据的整合已被证明能够全面了解HCC亚型,从而加强预后预测并指导个性化治疗策略。AIDRS的开发为风险分层提供了一个强大的工具,而CEP55已成为HCC治疗干预的一个有前景的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/a0a421f9f6e8/fimmu-16-1592259-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/bbcb58d53561/fimmu-16-1592259-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/dc25b684d068/fimmu-16-1592259-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/466ee1a6e52e/fimmu-16-1592259-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/d93cf4a45829/fimmu-16-1592259-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/e140e65cc079/fimmu-16-1592259-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/420fbca53df6/fimmu-16-1592259-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/faae156bb40a/fimmu-16-1592259-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/ad5498bf81f4/fimmu-16-1592259-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/f4acce7f98c9/fimmu-16-1592259-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/8fb1aef70528/fimmu-16-1592259-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/f797291ed015/fimmu-16-1592259-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/a0a421f9f6e8/fimmu-16-1592259-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/bbcb58d53561/fimmu-16-1592259-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/dc25b684d068/fimmu-16-1592259-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/466ee1a6e52e/fimmu-16-1592259-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/d93cf4a45829/fimmu-16-1592259-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/e140e65cc079/fimmu-16-1592259-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/420fbca53df6/fimmu-16-1592259-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/faae156bb40a/fimmu-16-1592259-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/ad5498bf81f4/fimmu-16-1592259-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/f4acce7f98c9/fimmu-16-1592259-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/8fb1aef70528/fimmu-16-1592259-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/f797291ed015/fimmu-16-1592259-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1f/12325060/a0a421f9f6e8/fimmu-16-1592259-g012.jpg

相似文献

[1]
Harnessing multi-omics and artificial intelligence: revolutionizing prognosis and treatment in hepatocellular carcinoma.

Front Immunol. 2025-7-23

[2]
CEP55: Implications for Immunotherapy and Survival in Hepatocellular Carcinoma.

Comb Chem High Throughput Screen. 2024-6-6

[3]
Multi-omics analysis identifies SNP-associated immune-related signatures by integrating Mendelian randomization and machine learning in hepatocellular carcinoma.

Sci Rep. 2025-7-4

[4]
Integrated multi-omics analysis and machine learning refine molecular subtypes and prognosis in hepatocellular carcinoma through O-linked glycosylation genes.

Funct Integr Genomics. 2025-7-28

[5]
Identification of anoikis-related subtypes and a risk score prognosis model, the association with TME landscapes and therapeutic responses in hepatocellular carcinoma.

Front Immunol. 2025-6-17

[6]
Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in hepatocellular carcinoma.

Sci Rep. 2025-7-3

[7]
Multi-omics-based subtyping of melanoma suggests distinct immune and targeted therapy strategies.

Front Immunol. 2025-6-12

[8]
Exercise-related immune gene signature for hepatocellular carcinoma: machine learning and multi-omics analysis.

Front Immunol. 2025-6-20

[9]
Identification of matrix stiffness-related molecular subtypes in HCC via integrating multi-omics analysis and machine learning algorithms.

J Transl Med. 2025-7-1

[10]
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.

Front Immunol. 2025-7-24

本文引用的文献

[1]
Pan-cancer analysis of oncogenic role of CEP55 and experiment validation in clear cell renal cell carcinoma.

Sci Rep. 2024-11-16

[2]
Reprogramming cellular senescence in the tumor microenvironment augments cancer immunotherapy through multifunctional nanocrystals.

Sci Adv. 2024-11

[3]
Enhanced Anti-Melanoma Activity of Nutlin-3a Delivered via Ethosomes: Targeting p53-Mediated Apoptosis in HT144 Cells.

Cells. 2024-10-11

[4]
Cell cycle inhibitors activate the hypoxia-induced DDX41/STING pathway to mediate antitumor immune response in liver cancer.

JCI Insight. 2024-11-22

[5]
Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation.

Immunity. 2024-10-8

[6]
Integrative radiomics clustering analysis to decipher breast cancer heterogeneity and prognostic indicators through multiparametric MRI.

NPJ Breast Cancer. 2024-8-7

[7]
Mime: A flexible machine-learning framework to construct and visualize models for clinical characteristics prediction and feature selection.

Comput Struct Biotechnol J. 2024-6-29

[8]
Integrated multi-omics analysis and machine learning to refine molecular subtypes, prognosis, and immunotherapy in lung adenocarcinoma.

Funct Integr Genomics. 2024-6-27

[9]
Unveiling divergent treatment prognoses in IDHwt-GBM subtypes through multiomics clustering: a swift dual MRI-mRNA model for precise subtype prediction.

J Transl Med. 2024-6-18

[10]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索