基于THRSP和ACACA蛋白组织表达构建预测乳腺癌患者预后的列线图模型

Construction of a Nomogram Model for Predicting Prognosis in Breast Cancer Patients Based on the Expression of THRSP and ACACA Proteins Tissues.

作者信息

Wei Benkai, Li Fan, Yan Huanhuan, Shen Jun

机构信息

Department of Breast Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222002, People's Republic of China.

出版信息

Pharmgenomics Pers Med. 2025 Jul 31;18:179-188. doi: 10.2147/PGPM.S516843. eCollection 2025.

Abstract

BACKGROUND

This study aimed to analyze the expression of thyroid hormone-responsive spot 14 (THRSP) and acetyl-CoA carboxylase alpha (ACACA) proteins in breast cancer tumor tissues and their relationship with clinicopathology and prognosis of breast cancer patients. In addition, a nomogram model to predict the prognosis of breast cancer patients was constructed in this study.

METHODS

Retrospective analysis of 202 cases of breast cancer patients who underwent surgical treatment in our hospital from October 2019 to March 2021, and collection of patients' cancer tissues and non-Tumor tissue specimens. Immunohistochemistry was used to detect THRSP and ACACA protein expression. Multivariate COX regression was used to analyze the risk factors affecting the prognosis of breast cancer patients. The "rms" package in R software was used to build a survival nomogram model and evaluate the effectiveness of the model.

RESULTS

The expression of THRSP and ACACA proteins in tumor tissues of breast cancer patients was higher than that in non-tumor tissues ( < 0.05). The expression of THRSP and ACACA proteins in breast cancer patients with lymph node metastasis was higher than that in patients without lymph node metastasis ( < 0.05). Cox regression analysis showed that TNM stage III, lymph node metastasis, high expression of Ki-67, high expression of THRSP, and high expression of ACACA were all risk factors for the prognosis of breast cancer patients ( < 0.05). The C-index of the nomogram model was 0.704 (95% CI: 0.596~0.892). The predicted 1-, 2- and 3-year survival AUCs of this nomogram model were 0.802, 0.769 and 0.770, respectively. The calibration curve showed that the model fit the ideal curve well. Decision curve analysis showed the high clinical utility of the model.

CONCLUSION

The nomogram model constructed based on THRSP and ACACA proteins may provide a reference value for the prognostic evaluation of breast cancer patients.

摘要

背景

本研究旨在分析甲状腺激素反应性斑点14(THRSP)和乙酰辅酶A羧化酶α(ACACA)蛋白在乳腺癌肿瘤组织中的表达及其与乳腺癌患者临床病理特征和预后的关系。此外,本研究构建了预测乳腺癌患者预后的列线图模型。

方法

回顾性分析2019年10月至2021年3月在我院接受手术治疗的202例乳腺癌患者,收集患者的癌组织和非肿瘤组织标本。采用免疫组织化学法检测THRSP和ACACA蛋白表达。采用多因素COX回归分析影响乳腺癌患者预后的危险因素。利用R软件中的“rms”包构建生存列线图模型并评估模型的有效性。

结果

乳腺癌患者肿瘤组织中THRSP和ACACA蛋白的表达高于非肿瘤组织(<0.05)。有淋巴结转移的乳腺癌患者THRSP和ACACA蛋白的表达高于无淋巴结转移的患者(<0.05)。Cox回归分析显示,TNM分期III期、淋巴结转移、Ki-67高表达、THRSP高表达和ACACA高表达均为乳腺癌患者预后的危险因素(<0.05)。列线图模型的C指数为0.704(95%CI:0.596~0.892)。该列线图模型预测的1年、2年和3年生存AUC分别为0.802、0.769和0.770。校准曲线显示模型与理想曲线拟合良好。决策曲线分析显示该模型具有较高的临床实用性。

结论

基于THRSP和ACACA蛋白构建的列线图模型可为乳腺癌患者的预后评估提供参考价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9e/12326444/6f94041b99d5/PGPM-18-179-g0001.jpg

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索