Sora K J, Wabnitz C C C, Steiner N S, Sumaila U R, Hoover C, Niemi A, Loseto L, Lea E V, Breiter C C, Palacios-Abrantes J, Reygondeau G, Farnole P, Sou T, Cheung W W L
Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC V6T 1Z4 Canada.
Stanford Center for Ocean Solutions, Stanford University, Stanford, CA 94305 USA.
Discov Ocean. 2025;2(1):32. doi: 10.1007/s44289-025-00056-7. Epub 2025 Jul 31.
Climate change is impacting Arctic marine ecosystems at faster rates than the global average, challenging the management and conservation of biodiversity and living marine resources. This study examined the climate risks and vulnerabilities of 21 Arctic fish species occurring in the western Canadian Arctic using a fuzzy logic approach. Identified climatic hazards to marine species and their habitats are increasing temperature, decreasing sea ice cover, freshening, decreasing oxygen concentration, and acidification. The nature of these hazards included changes in mean conditions by 2050 (2041-2060), compared to the historical period (1979-2015 average) simulated from a regional coupled ice-ocean biogeochemical model and two coupled Earth system models under low and high emissions scenarios. A spatially-explicit algorithm was used to assess the risk and vulnerability in the Beaufort Sea shelf and slope and Amundsen Gulf (BS-AG) based on the species' biological traits, biogeography and their exposure to climatic hazards. The results indicated high to very high exposure and risk of climate impacts across the ecosystem variables. Specifically, shallow areas were projected to be simultaneously exposed to more intense warming, reduced sea ice coverage, freshening, and acidification relative to the regional averages. In addition, for species occurring in the BS-AG, low adaptability and high sensitivity to climate hazards was identified. These applied tools and evaluations can inform marine spatial planning and climate adaptation efforts to help achieve conservation objectives and sustain ecosystem and community health in a changing Arctic climate.
The online version contains supplementary material available at 10.1007/s44289-025-00056-7.
气候变化对北极海洋生态系统的影响速度快于全球平均水平,给生物多样性和海洋生物资源的管理与保护带来了挑战。本研究采用模糊逻辑方法,研究了加拿大北极西部地区出现的21种北极鱼类的气候风险和脆弱性。已确定的对海洋物种及其栖息地的气候危害包括气温上升、海冰覆盖减少、海水变淡、氧气浓度降低和酸化。这些危害的性质包括到2050年(2041 - 2060年)与历史时期(1979 - 2015年平均值)相比,平均条件的变化,这是通过区域冰 - 海洋生物地球化学模型和两个地球系统耦合模型在低排放和高排放情景下模拟得出的。基于物种的生物学特征、生物地理学及其暴露于气候危害的情况,使用一种空间明确的算法来评估波弗特海陆架和陆坡以及阿蒙森湾(BS - AG)的风险和脆弱性。结果表明,整个生态系统变量面临的气候影响暴露程度高到非常高,风险也很高。具体而言,预计浅水区相对于区域平均水平将同时面临更强烈的变暖、海冰覆盖减少、海水变淡和酸化。此外,对于在BS - AG出现的物种,确定其对气候危害的适应性低且敏感性高。这些应用工具和评估可为海洋空间规划和气候适应努力提供信息,以帮助在不断变化的北极气候中实现保护目标并维持生态系统和群落健康。
在线版本包含可在10.1007/s44289 - 025 - 00056 - 7获取的补充材料。