Hamieh Tayssir
Faculty of Science and Engineering, Maastricht University P. O. Box 616 6200 MD Maastricht The Netherlands
Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS, IS2M UMR 7361 F-68100 Mulhouse France.
RSC Adv. 2025 Aug 6;15(34):27941-27950. doi: 10.1039/d5ra03892h. eCollection 2025 Aug 1.
Understanding the role of temperature in modulating surface adhesion properties of graphene and its derivatives is essential for their effective integration in nano- and optoelectronic devices. In this study, the temperature-dependent dispersive and polar components of work of adhesion was systematically investigated across graphene (G), reduced graphene oxide (rGO), and graphene oxide (GO), using inverse gas chromatography (IGC) and selected polar/nonpolar solvent interactions. Our results reveal a consistent hierarchy in adhesion energies (G > rGO > GO) and show that elevated temperatures significantly influence interfacial interactions by modifying surface energy components. Furthermore, the solvent-specific trends suggest a strong interplay between molecular polarity and surface functionalization. This study not only provides thermodynamic insights into graphene-based adhesion but also contributes to rational interface engineering in 2D materials under thermal fluctuation.
了解温度在调节石墨烯及其衍生物的表面粘附特性中的作用对于它们在纳米和光电器件中的有效集成至关重要。在本研究中,使用反相气相色谱(IGC)和选定的极性/非极性溶剂相互作用,系统地研究了石墨烯(G)、还原氧化石墨烯(rGO)和氧化石墨烯(GO)上粘附功的温度依赖性色散和极性成分。我们的结果揭示了粘附能的一致层次结构(G > rGO > GO),并表明升高的温度通过改变表面能成分显著影响界面相互作用。此外,溶剂特异性趋势表明分子极性与表面功能化之间存在强烈的相互作用。本研究不仅提供了基于石墨烯的粘附的热力学见解,还为热波动下二维材料的合理界面工程做出了贡献。