Jardine Kolby J, Honeker Linnea K, Zhang Zhaoxin, Kwatcho Kengdo Steve, Yang Yuguo, Roscioli Joseph, Riley William J
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
New Phytol. 2025 Nov;248(3):1132-1153. doi: 10.1111/nph.70434. Epub 2025 Aug 7.
One-carbon (C) metabolism, centered on the universal methyl donor S-adenosyl methionine (SAM), plays critical roles in biosynthesis, redox regulation, and stress responses across plants and microbes. A recently proposed photosynthetic C pathway links SAM methyl groups directly to RuBisCO-mediated CO assimilation and integrates with nitrogen and sulfur metabolism. Light-dependent SAM synthesis may regulate the methylation of biopolymers and specialized metabolites and help mitigate photorespiratory stress under elevated temperature and drought. Phylogenetic analysis of two core enzymes suggests evolutionary continuity from methylotrophic microbes to land plants, supporting microbial origins via endosymbiotic gene transfer. Beyond intracellular roles, C metabolism drives biosphere-atmosphere exchange via gases such as methane, methanol, formic acid, and formaldehyde, and numerous specialized volatiles synthesized through SAM methylation. S-methylmethionine, a mobile C metabolite, may mediate phloem transport of reduced sulfur, nitrogen, and methyl groups, linking above- and belowground C cycling in plants. Advances in real-time gas sensing now allow the high-frequency quantification of C fluxes from leaves, stems, and soils, highlighting C metabolism as a critical and underrecognized component of terrestrial carbon and nutrient cycling. Given its microbial ancestry and the production of diverse volatile biosignatures, C metabolism may also offer unique insights into life's origins and biosignature detection on exoplanets.
以通用甲基供体S-腺苷甲硫氨酸(SAM)为核心的一碳(C)代谢,在植物和微生物的生物合成、氧化还原调节及应激反应中发挥着关键作用。最近提出的一条光合碳途径将SAM甲基基团直接与核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)介导的CO₂同化联系起来,并与氮和硫代谢整合。光依赖的SAM合成可能调节生物聚合物和特殊代谢物的甲基化,并有助于减轻高温和干旱条件下的光呼吸应激。对两种核心酶的系统发育分析表明,从甲基营养微生物到陆地植物存在进化连续性,支持通过内共生基因转移的微生物起源。除了细胞内作用外,碳代谢还通过甲烷、甲醇、甲酸和甲醛等气体以及通过SAM甲基化合成的众多特殊挥发物驱动生物圈与大气的交换。S-甲基甲硫氨酸是一种可移动的碳代谢物,可能介导还原态硫、氮和甲基的韧皮部运输,连接植物地上和地下的碳循环。实时气体传感技术的进步现在能够高频定量测定叶片、茎和土壤中的碳通量,突出了碳代谢作为陆地碳和养分循环中一个关键但未得到充分认识的组成部分。鉴于其微生物起源以及产生多种挥发性生物特征,碳代谢也可能为生命起源和系外行星上生物特征的探测提供独特见解。