Suppr超能文献

甲基在叶酸和胆碱代谢途径之间的穿梭

The Shuttling of Methyl Groups Between Folate and Choline Pathways.

作者信息

Bortz Jonathan, Obeid Rima

机构信息

Human Nutrition and Health, Balchem Corporation, 5 Paragon Drive, Montvale, NJ 07645, USA.

Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, D-66424 Homburg, Germany.

出版信息

Nutrients. 2025 Jul 30;17(15):2495. doi: 10.3390/nu17152495.

Abstract

Methyl groups can be obtained either from the diet (labile methyl groups) or produced endogenously (methylneogenesis) via one-carbon (C1-) metabolism as S-adenosylmethionine (SAM). The essential nutrients folate and choline (through betaine) are metabolically entwined to feed their methyl groups into C1-metabolism. A choline-deficient diet in rats produces a 31-40% reduction in liver folate content, 50% lower hepatic SAM levels, and a doubling of plasma homocysteine. Similarly, folate deficiency results in decreased total hepatic choline. Thus, sufficient intakes of both folate and choline (or betaine) contribute to safeguarding the methyl balance in the body. A significant amount of choline (as phosphatidylcholine) is produced in the liver via the SAM-dependent phosphatidylethanolamine methyltransferase. Experimental studies using diets deficient in several methyl donors have shown that supplemental betaine was able to rescue not only plasma betaine but also plasma folate. Fasting plasma homocysteine concentrations are mainly determined by folate intake or status, while the effect of choline or betaine on fasting plasma homocysteine is minor. This appears to contradict the finding that approximately 50% of cellular SAM is provided via the betaine-homocysteine methyltransferase (BHMT) pathway, which uses dietary choline (after oxidation to betaine) or betaine to convert homocysteine to methionine and then to SAM. However, it has been shown that the relative contribution of choline and betaine to cellular methylation is better reflected by measuring plasma homocysteine after a methionine load test. Choline or betaine supplementation significantly lowers post-methionine load homocysteine, whereas folate supplementation has a minor effect on post-methionine load homocysteine concentrations. This review highlights the interactions between folate and choline and the essentiality of choline as a key player in C1-metabolism. We further address some areas of interest for future work.

摘要

甲基可从饮食中获取(不稳定甲基),也可通过一碳(C1-)代谢以内源性方式(甲基新生)生成,即作为S-腺苷甲硫氨酸(SAM)。必需营养素叶酸和胆碱(通过甜菜碱)在代谢上相互关联,将它们的甲基输入C1-代谢。大鼠的胆碱缺乏饮食会使肝脏叶酸含量降低31%-40%,肝脏SAM水平降低50%,血浆同型半胱氨酸水平翻倍。同样,叶酸缺乏会导致肝脏总胆碱减少。因此,充足的叶酸和胆碱(或甜菜碱)摄入量有助于维持体内甲基平衡。大量胆碱(作为磷脂酰胆碱)通过SAM依赖的磷脂酰乙醇胺甲基转移酶在肝脏中产生。使用缺乏多种甲基供体的饮食进行的实验研究表明,补充甜菜碱不仅能够恢复血浆甜菜碱水平,还能恢复血浆叶酸水平。空腹血浆同型半胱氨酸浓度主要由叶酸摄入量或状态决定,而胆碱或甜菜碱对空腹血浆同型半胱氨酸的影响较小。这似乎与以下发现相矛盾:约50%的细胞SAM是通过甜菜碱-同型半胱氨酸甲基转移酶(BHMT)途径提供的,该途径利用膳食胆碱(氧化为甜菜碱后)或甜菜碱将同型半胱氨酸转化为甲硫氨酸,然后再转化为SAM。然而,研究表明,通过蛋氨酸负荷试验后测量血浆同型半胱氨酸,能更好地反映胆碱和甜菜碱对细胞甲基化的相对贡献。补充胆碱或甜菜碱可显著降低蛋氨酸负荷后的同型半胱氨酸水平,而补充叶酸对蛋氨酸负荷后的同型半胱氨酸浓度影响较小。本综述强调了叶酸与胆碱之间的相互作用以及胆碱作为C1-代谢关键参与者的重要性。我们还进一步探讨了未来工作中一些感兴趣的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eb9/12348172/26d75f0260d8/nutrients-17-02495-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验