Suppr超能文献

胶质母细胞瘤中的机器学习与深度学习:诊断、预后及治疗的系统评价与荟萃分析

Machine learning and deep learning in glioblastoma: a systematic review and meta-analysis of diagnosis, prognosis, and treatment.

作者信息

Tbahriti Hadja Fatima, Boukadoum Ali, Benbernou Meriem, Belhocine Mohamed

机构信息

Higher School of Biological Sciences of Oran, Oran, Algeria.

Laboratory of Clinical Nutrition and Metabolism, Department of Biology, Faculty of Natural and Life Sciences, University Oran1, Oran, Algeria.

出版信息

Discov Oncol. 2025 Aug 7;16(1):1492. doi: 10.1007/s12672-025-03303-7.

Abstract

INTRODUCTION

Glioblastoma (GBM) is the most malignant primary brain cancer, associated with a median overall survival of 15 months. Traditional diagnosis and prognosis heavily rely on clinical examination and histological investigation, both of which are subjective and time-consuming. advances in machine learning (ML) and deep learning (DL) have largely accelerated the research of GBMs by enhancing tumour segmentation, molecular characterization and survival prediction.

METHODOLOGY

We refer to the PRISMA guidelines to report this systematic review and meta-analysis. A total of 44 studies published from 2021 to 2025 were analyzed. We thoroughly searched the following sources: PubMed, Scopus and Web of Science. Review-specific inclusion criteria included studies reporting on diagnostic, prognostic, or response-prediction tasks in GBM that used ML/DL models and reports on quantitative performance metrics. The independent random-effects model estimated the performance of each clinical task, and subgroup analysis determined the variables influencing model accuracy.

RESULTS

The performance of the machine and deep learning models was strong across different clinical tasks. For overall survival prognosis, the pooled C-index was 0.78 (95%CI 0.74-0.82, I = 68.5%). The tumor segmentation models had a high average Dice Similarity Coefficient value (0.91, 95% CI 0.87-0.94, I = 45.2%). Molecular tests were highly accurate for the prediction of IDH1 mutation (pooled accuracy = 90.5%, 95% CI 88.1% to 92.8%) and MGMT methylation status (pooled accuracy = 97.8%, 95% CI 96.4% to 99.1%). Transformer models excelled over CNN in segmentation, and radionics-based ML could improve non-invasive molecular assessment.

CONCLUSION

Although AI techniques have demonstrated encouraging results in GBM studies for various clinical tasks, substantial challenges still preclude efficient clinical applicability. These developments can potentially improve medical practice with improved diagnosis, personalized treatment and fewer invasive procedures. Nevertheless, variation in data, weak external validation, and missing prospective clinical studies warrant careful interpretation of these results.

摘要

引言

胶质母细胞瘤(GBM)是最恶性的原发性脑癌,患者的中位总生存期为15个月。传统的诊断和预后评估严重依赖临床检查和组织学调查,这两者都具有主观性且耗时。机器学习(ML)和深度学习(DL)的进展通过加强肿瘤分割、分子特征分析和生存预测,在很大程度上加速了胶质母细胞瘤的研究。

方法

我们参考PRISMA指南报告这项系统评价和荟萃分析。共分析了2021年至2025年发表的44项研究。我们全面检索了以下来源:PubMed、Scopus和科学网。特定综述的纳入标准包括报告使用ML/DL模型进行胶质母细胞瘤诊断、预后或反应预测任务的研究,以及关于定量性能指标的报告。独立随机效应模型估计了每个临床任务的性能,亚组分析确定了影响模型准确性的变量。

结果

机器学习和深度学习模型在不同临床任务中的表现都很出色。对于总生存期预后,合并C指数为0.78(95%CI 0.74 - 0.82,I = 68.5%)。肿瘤分割模型的平均骰子相似系数值较高(0.91,95%CI 0.87 - 0.94,I = 45.2%)。分子检测对IDH1突变(合并准确率 = 90.5%,95%CI 88.1%至92.8%)和MGMT甲基化状态(合并准确率 = 97.8%,95%CI 96.4%至99.1%)的预测高度准确。在分割方面Transformer模型优于卷积神经网络(CNN),基于放射组学的ML可以改善非侵入性分子评估。

结论

尽管人工智能技术在胶质母细胞瘤的各种临床任务研究中已显示出令人鼓舞的结果,但重大挑战仍然阻碍了其有效的临床应用。这些进展有可能通过改善诊断、个性化治疗和减少侵入性程序来改善医疗实践。然而,数据的差异、外部验证不足以及前瞻性临床研究的缺失,使得对这些结果的解读需要谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e91/12331544/f2e13e19fe55/12672_2025_3303_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验