Karabacak Mert, Patil Shiv, Gersey Zachary Charles, Komotar Ricardo Jorge, Margetis Konstantinos
Department of Neurosurgery, Mount Sinai Health System, New York, NY 10029, USA.
Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Cancers (Basel). 2024 Oct 26;16(21):3614. doi: 10.3390/cancers16213614.
(1) Background: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with an aggressive disease course that requires accurate prognosis for individualized treatment planning. This study aims to develop and evaluate a radiomics-based machine learning (ML) model to estimate overall survival (OS) for patients with GBM using pre-treatment multi-parametric magnetic resonance imaging (MRI). (2) Methods: The MRI data of 865 patients with GBM were assessed, comprising 499 patients from the UPENN-GBM dataset and 366 patients from the UCSF-PDGM dataset. A total of 14,598 radiomic features were extracted from T1, T1 with contrast, T2, and FLAIR MRI sequences using PyRadiomics. The UPENN-GBM dataset was used for model development (70%) and internal validation (30%), while the UCSF-PDGM dataset served as an external test set. The NGBoost Survival model was developed to generate continuous probability estimates as well as predictions for 6-, 12-, 18-, and 24-month OS. (3) Results: The NGBoost Survival model successfully predicted survival, achieving a C-index of 0.801 on internal validation and 0.725 on external validation. For 6-month OS, the model attained an AUROC of 0.791 (95% CI: 0.742-0.832) and 0.708 (95% CI: 0.654-0.748) for internal and external validation, respectively. (4) Conclusions: The radiomics-based ML model demonstrates potential to improve the prediction of OS for patients with GBM.
(1) 背景:胶质母细胞瘤(GBM)是成人中最常见的原发性恶性脑肿瘤,其病程侵袭性强,需要准确的预后评估以制定个体化治疗方案。本研究旨在开发并评估一种基于影像组学的机器学习(ML)模型,利用治疗前多参数磁共振成像(MRI)来估计GBM患者的总生存期(OS)。(2) 方法:评估了865例GBM患者的MRI数据,其中包括来自UPENN - GBM数据集的499例患者和来自UCSF - PDGM数据集的366例患者。使用PyRadiomics从T1、T1加权增强、T2和FLAIR MRI序列中提取了总共14598个影像组学特征。UPENN - GBM数据集用于模型开发(70%)和内部验证(30%),而UCSF - PDGM数据集作为外部测试集。开发了NGBoost生存模型以生成连续概率估计以及对6个月、12个月、18个月和24个月总生存期的预测。(3) 结果:NGBoost生存模型成功预测了生存期,内部验证时C指数为0.801,外部验证时为0.725。对于6个月总生存期,模型在内部验证和外部验证中的AUROC分别为0.791(95%CI:0.742 - 0.832)和0.708(95%CI:0.654 - 0.748)。(4) 结论:基于影像组学的ML模型显示出改善GBM患者总生存期预测的潜力。