Sabando Ronald Cárdenas, Riplinger Christoph, Wennmohs Frank, Neese Frank, Bistoni Giovanni
Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
FAccTs GmbH, 50677 Koeln, Germany.
J Chem Theory Comput. 2025 Aug 26;21(16):7920-7934. doi: 10.1021/acs.jctc.5c01003. Epub 2025 Aug 7.
We report a comprehensive implementation of the Extended Transition State-Natural Orbitals for Chemical Valence (ETS-NOCV) scheme in the orca quantum chemistry package. This implementation broadens the applicability of ETS-NOCV by supporting a wide range of electronic structure methods, including hybrid and double-hybrid density functionals, as well as modern semiempirical and composite approaches such as HF-3c and rSCAN-3c. The implementation is fully parallelized, allowing for the routine analysis of bonding interactions in large molecular systems. We benchmark the method across a set of chemically diverse systems, ranging from noncovalent dimers to dirhodium-carbene complexes, with a particular focus on the performance of semiempirical and double-hybrid functionals, which had not been previously available within this framework. The results highlight the physical interpretability of the method and the computational efficiency of our implementation, providing practical guidelines for selecting appropriate levels of theory in different bonding scenarios.
我们报告了在orca量子化学软件包中对扩展过渡态-化学价自然轨道(ETS-NOCV)方案的全面实现。该实现通过支持多种电子结构方法拓宽了ETS-NOCV的适用性,这些方法包括杂化和双杂化密度泛函,以及现代半经验和复合方法,如HF-3c和rSCAN-3c。该实现完全并行化,能够对大分子系统中的键合相互作用进行常规分析。我们在一系列化学性质多样的系统上对该方法进行基准测试,范围从非共价二聚体到二铑-卡宾配合物,特别关注半经验和双杂化泛函的性能,此前在该框架内无法获得这些性能。结果突出了该方法的物理可解释性以及我们实现的计算效率,为在不同键合场景中选择合适的理论水平提供了实用指南。