Suppr超能文献

人工智能支持的共同决策(AI-SDM):概念框架

AI-Supported Shared Decision-Making (AI-SDM): Conceptual Framework.

作者信息

As'ad Mohammed, Faran Nawarh, Joharji Hala

机构信息

Corporate Quality & Patient Safety, Dr Sulaiman Al Habib Medical Group, Olaya Street, Riyadh, 12214, Saudi Arabia, 966 920066666.

Dr Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia.

出版信息

JMIR AI. 2025 Aug 7;4:e75866. doi: 10.2196/75866.

Abstract

Shared decision-making is central to patient-centered care but is often hampered by artificial intelligence (AI) systems that focus on technical transparency rather than delivering context-rich, clinically meaningful reasoning. Although AI explainability methods elucidate how decisions are made, they fall short of addressing the "why" that supports effective patient-clinician dialogue. To bridge this gap, we introduce artificial intelligence-supported shared decision-making (AI-SDM), a conceptual framework designed to integrate AI-based reasoning into shared decision-making to enhance care quality while preserving patient autonomy. AI-SDM is a structured, multimodel framework that synthesizes predictive modeling, evidence-based recommendations, and generative AI techniques to produce adaptive, context-sensitive explanations. The framework distinguishes conventional AI explainability from AI reasoning-prioritizing the generation of tailored, narrative justifications that inform shared decisions. A hypothetical clinical scenario in stroke management is used to illustrate how AI-SDM facilitates an iterative, triadic deliberation process between health care providers, patients, and AI outputs. This integration is intended to transform raw algorithmic data into actionable insights that directly support the decision-making process without supplanting human judgment.

摘要

共同决策是患者为中心的医疗的核心,但往往受到人工智能(AI)系统的阻碍,这些系统侧重于技术透明度,而不是提供丰富背景、具有临床意义的推理。尽管人工智能可解释性方法阐明了决策是如何做出的,但它们未能解决支持有效的患者-临床医生对话的“原因”。为了弥合这一差距,我们引入了人工智能支持的共同决策(AI-SDM),这是一个概念框架,旨在将基于人工智能的推理整合到共同决策中,以提高医疗质量,同时维护患者自主权。AI-SDM是一个结构化的多模型框架,它综合了预测建模、循证推荐和生成式人工智能技术,以产生适应性强、上下文敏感的解释。该框架将传统的人工智能可解释性与人工智能推理区分开来——优先生成定制的叙述性理由,为共同决策提供信息。一个中风管理的假设临床场景用于说明AI-SDM如何促进医疗保健提供者、患者和人工智能输出之间的迭代、三方审议过程。这种整合旨在将原始算法数据转化为可直接支持决策过程的可操作见解,而不取代人类判断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/12331219/2564edde534c/ai-v4-e75866-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验