Borna Sahar, Maniaci Michael J, Haider Clifton R, Maita Karla C, Torres-Guzman Ricardo A, Avila Francisco R, Lunde Julianne J, Coffey Jordan D, Demaerschalk Bart M, Forte Antonio J
Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA.
Division of Hospital Internal Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.
Healthcare (Basel). 2023 Sep 19;11(18):2584. doi: 10.3390/healthcare11182584.
Electronic health record (EHR) systems collate patient data, and the integration and standardization of documents through Health Information Exchange (HIE) play a pivotal role in refining patient management. Although the clinical implications of AI in EHR systems have been extensively analyzed, its application in HIE as a crucial source of patient data is less explored. Addressing this gap, our systematic review delves into utilizing AI models in HIE, gauging their predictive prowess and potential limitations. Employing databases such as Scopus, CINAHL, Google Scholar, PubMed/Medline, and Web of Science and adhering to the PRISMA guidelines, we unearthed 1021 publications. Of these, 11 were shortlisted for the final analysis. A noticeable preference for machine learning models in prognosticating clinical results, notably in oncology and cardiac failures, was evident. The metrics displayed AUC values ranging between 61% and 99.91%. Sensitivity metrics spanned from 12% to 96.50%, specificity from 76.30% to 98.80%, positive predictive values varied from 83.70% to 94.10%, and negative predictive values between 94.10% and 99.10%. Despite variations in specific metrics, AI models drawing on HIE data unfailingly showcased commendable predictive proficiency in clinical verdicts, emphasizing the transformative potential of melding AI with HIE. However, variations in sensitivity highlight underlying challenges. As healthcare's path becomes more enmeshed with AI, a well-rounded, enlightened approach is pivotal to guarantee the delivery of trustworthy and effective AI-augmented healthcare solutions.
电子健康记录(EHR)系统整理患者数据,通过健康信息交换(HIE)实现文档的整合与标准化,这在优化患者管理方面发挥着关键作用。尽管人工智能在EHR系统中的临床意义已得到广泛分析,但其在作为患者数据重要来源的HIE中的应用却较少被探讨。为填补这一空白,我们的系统综述深入研究了在HIE中利用人工智能模型,评估其预测能力和潜在局限性。通过使用Scopus、CINAHL、谷歌学术、PubMed/Medline和Web of Science等数据库,并遵循PRISMA指南,我们共发掘出1021篇出版物。其中,11篇被列入最终分析。明显倾向于使用机器学习模型来预测临床结果,尤其是在肿瘤学和心力衰竭领域。各项指标显示,曲线下面积(AUC)值在61%至99.91%之间。灵敏度指标范围为12%至96.50%,特异性为76.30%至98.80%,阳性预测值从83.70%至94.10%不等,阴性预测值在94.10%至99.10%之间。尽管具体指标存在差异,但利用HIE数据的人工智能模型在临床诊断中始终展现出值得称赞的预测能力,凸显了将人工智能与HIE融合的变革潜力。然而,灵敏度的差异突出了潜在挑战。随着医疗保健的发展路径与人工智能的联系日益紧密,全面、明智的方法对于确保提供可靠且有效的人工智能辅助医疗保健解决方案至关重要。