Suppr超能文献

健康信息交换中的人工智能模型:对临床意义的系统评价

Artificial Intelligence Models in Health Information Exchange: A Systematic Review of Clinical Implications.

作者信息

Borna Sahar, Maniaci Michael J, Haider Clifton R, Maita Karla C, Torres-Guzman Ricardo A, Avila Francisco R, Lunde Julianne J, Coffey Jordan D, Demaerschalk Bart M, Forte Antonio J

机构信息

Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA.

Division of Hospital Internal Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.

出版信息

Healthcare (Basel). 2023 Sep 19;11(18):2584. doi: 10.3390/healthcare11182584.

Abstract

Electronic health record (EHR) systems collate patient data, and the integration and standardization of documents through Health Information Exchange (HIE) play a pivotal role in refining patient management. Although the clinical implications of AI in EHR systems have been extensively analyzed, its application in HIE as a crucial source of patient data is less explored. Addressing this gap, our systematic review delves into utilizing AI models in HIE, gauging their predictive prowess and potential limitations. Employing databases such as Scopus, CINAHL, Google Scholar, PubMed/Medline, and Web of Science and adhering to the PRISMA guidelines, we unearthed 1021 publications. Of these, 11 were shortlisted for the final analysis. A noticeable preference for machine learning models in prognosticating clinical results, notably in oncology and cardiac failures, was evident. The metrics displayed AUC values ranging between 61% and 99.91%. Sensitivity metrics spanned from 12% to 96.50%, specificity from 76.30% to 98.80%, positive predictive values varied from 83.70% to 94.10%, and negative predictive values between 94.10% and 99.10%. Despite variations in specific metrics, AI models drawing on HIE data unfailingly showcased commendable predictive proficiency in clinical verdicts, emphasizing the transformative potential of melding AI with HIE. However, variations in sensitivity highlight underlying challenges. As healthcare's path becomes more enmeshed with AI, a well-rounded, enlightened approach is pivotal to guarantee the delivery of trustworthy and effective AI-augmented healthcare solutions.

摘要

电子健康记录(EHR)系统整理患者数据,通过健康信息交换(HIE)实现文档的整合与标准化,这在优化患者管理方面发挥着关键作用。尽管人工智能在EHR系统中的临床意义已得到广泛分析,但其在作为患者数据重要来源的HIE中的应用却较少被探讨。为填补这一空白,我们的系统综述深入研究了在HIE中利用人工智能模型,评估其预测能力和潜在局限性。通过使用Scopus、CINAHL、谷歌学术、PubMed/Medline和Web of Science等数据库,并遵循PRISMA指南,我们共发掘出1021篇出版物。其中,11篇被列入最终分析。明显倾向于使用机器学习模型来预测临床结果,尤其是在肿瘤学和心力衰竭领域。各项指标显示,曲线下面积(AUC)值在61%至99.91%之间。灵敏度指标范围为12%至96.50%,特异性为76.30%至98.80%,阳性预测值从83.70%至94.10%不等,阴性预测值在94.10%至99.10%之间。尽管具体指标存在差异,但利用HIE数据的人工智能模型在临床诊断中始终展现出值得称赞的预测能力,凸显了将人工智能与HIE融合的变革潜力。然而,灵敏度的差异突出了潜在挑战。随着医疗保健的发展路径与人工智能的联系日益紧密,全面、明智的方法对于确保提供可靠且有效的人工智能辅助医疗保健解决方案至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c107/10531020/6053c4e45eb8/healthcare-11-02584-g001.jpg

相似文献

1
Artificial Intelligence Models in Health Information Exchange: A Systematic Review of Clinical Implications.
Healthcare (Basel). 2023 Sep 19;11(18):2584. doi: 10.3390/healthcare11182584.
4
Artificial Intelligence Support for Informal Patient Caregivers: A Systematic Review.
Bioengineering (Basel). 2024 May 12;11(5):483. doi: 10.3390/bioengineering11050483.
7
Artificial Intelligence in Head and Neck Cancer: A Systematic Review of Systematic Reviews.
Adv Ther. 2023 Aug;40(8):3360-3380. doi: 10.1007/s12325-023-02527-9. Epub 2023 Jun 8.
8
A scoping review of artificial intelligence-based methods for diabetes risk prediction.
NPJ Digit Med. 2023 Oct 25;6(1):197. doi: 10.1038/s41746-023-00933-5.
9
Africa's readiness for artificial intelligence in clinical radiotherapy delivery: Medical physicists to lead the way.
Phys Med. 2023 Sep;113:102653. doi: 10.1016/j.ejmp.2023.102653. Epub 2023 Aug 14.
10
Artificial intelligence technologies and compassion in healthcare: A systematic scoping review.
Front Psychol. 2023 Jan 17;13:971044. doi: 10.3389/fpsyg.2022.971044. eCollection 2022.

引用本文的文献

1
AI-Supported Shared Decision-Making (AI-SDM): Conceptual Framework.
JMIR AI. 2025 Aug 7;4:e75866. doi: 10.2196/75866.

本文引用的文献

1
Transforming Healthcare Analytics with FHIR: A Framework for Standardizing and Analyzing Clinical Data.
Healthcare (Basel). 2023 Jun 13;11(12):1729. doi: 10.3390/healthcare11121729.
3
Natural language processing for clinical notes in dentistry: A systematic review.
J Biomed Inform. 2023 Feb;138:104282. doi: 10.1016/j.jbi.2023.104282. Epub 2023 Jan 7.
4
Systematic review of co-design in digital health for COVID-19 research.
Univers Access Inf Soc. 2022 Dec 31:1-15. doi: 10.1007/s10209-022-00964-x.
5
Machine-learning based investigation of prognostic indicators for oncological outcome of pancreatic ductal adenocarcinoma.
Front Oncol. 2022 Dec 8;12:895515. doi: 10.3389/fonc.2022.895515. eCollection 2022.
6
Explanatory machine learning for justified trust in human-AI collaboration: Experiments on file deletion recommendations.
Front Artif Intell. 2022 Nov 23;5:919534. doi: 10.3389/frai.2022.919534. eCollection 2022.
8
The Patient Role in a Federal National-Scale Health Information Exchange.
J Med Internet Res. 2022 Nov 4;24(11):e41750. doi: 10.2196/41750.
9
Common data model for COVID-19 datasets.
Bioinformatics. 2022 Dec 13;38(24):5466-5468. doi: 10.1093/bioinformatics/btac651.
10
Telemedicine and Digital Health Applications in Vascular Surgery.
J Clin Med. 2022 Oct 13;11(20):6047. doi: 10.3390/jcm11206047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验