Suppr超能文献

通过静电锚定与受限硫化策略构建用于高性能锌离子电池的层间结构MnS@MXene阴极

Construction of interlayer-structured MnS@MXene cathode via a electrostatic anchoring combined with confined sulfidation strategy for high-performance zinc-ion batteries.

作者信息

Mao Jianjiang, Huang Yu, Cheng Fei

机构信息

National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Xiping Road 5340, Beichen District, Tianjin 300130, People's Republic of China.

National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Xiping Road 5340, Beichen District, Tianjin 300130, People's Republic of China.

出版信息

J Colloid Interface Sci. 2025 Dec 15;700(Pt 3):138634. doi: 10.1016/j.jcis.2025.138634. Epub 2025 Aug 5.

Abstract

MnS materials have gained prominence as a promising cathode material for aqueous zinc-ion batteries (AZIBs) due to their exceptional electrical conductivity and superior electrochemical reactivity, but their practical applications are limited by the suboptimal reaction kinetics, inadequate cycle durability, as well as the ambiguities in the fundamental charge storage mechanisms. Herein, a unique interlayer-structured MnS@MXene cathode is designed and synthesized through an electrostatic anchoring combined with confined sulfidation approach, which enables in situ growth of MnS in MXene matrices, overcoming the challenges of weak interfacial bonding and uneven particle distribution encountered in traditional composite fabrication methods. The periodic stacking of MnS nanoparticles and MXene lamellae forms a large number of heterogeneous interfaces, which construct a good conductive network while offering an increased number of active sites for electrochemical reactions. When employed as a cathode material for AZIBs, the electrochemical activity of MnS is unlocked by the initial charging process, and it exhibits considerable capacity of 325 mAh g at a current density of 0.2 A g and superior cycling performance with a specific discharge capacity of 274 mAh g even after 400 cycles at a current density of 0.5 A g. Even at a high current density of 2 A g, a reversible specific capacity of 105 mA g is still achieved after 2500 cycles. The superior performance originates from the synergistic effect between the high electrical conductivity of MXene and the nanoscale dimension of MnS, which facilitates the electrochemical activation process of MnS involving a reversible conversion between MnOOH/ZnMnO and MnO/ZnMnO accompanied by the co-insertion/extraction of H and Zn.

摘要

由于具有出色的导电性和卓越的电化学反应活性,硫化锰(MnS)材料作为水系锌离子电池(AZIBs)的一种有前景的阴极材料而备受关注。然而,其实际应用受到反应动力学欠佳、循环耐久性不足以及基本电荷存储机制尚不明确等因素的限制。在此,通过静电锚定结合受限硫化法设计并合成了一种独特的层间结构MnS@MXene阴极,该方法能够使MnS在MXene基体中原位生长,克服了传统复合制备方法中存在的界面结合力弱和颗粒分布不均等问题。MnS纳米颗粒与MXene薄片的周期性堆叠形成了大量异质界面,这些界面构建了良好的导电网络,同时为电化学反应提供了更多的活性位点。当用作AZIBs的阴极材料时,MnS的电化学活性在初始充电过程中被激活,在0.2 A g的电流密度下表现出325 mAh g的可观容量,并且具有优异的循环性能,即使在0.5 A g的电流密度下经过400次循环后,比放电容量仍为274 mAh g。即使在2 A g的高电流密度下,经过2500次循环后仍可实现105 mA g的可逆比容量。这种优异的性能源于MXene的高电导率与MnS的纳米尺度之间的协同效应,这有利于MnS的电化学活化过程,该过程涉及MnOOH/ZnMnO与MnO/ZnMnO之间的可逆转化,并伴随着H和Zn的共嵌入/脱出。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验