Seo Kangmin, Lee Gahyeon, Ra Jihyun, Kim Hye Ri, Im Sejin, Lim Hyunseob, Kim Changhee, Joo Jong Hoon
Department of Environment and Energy Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Center for Quantum Conversion Research, Institute for Basic Science (IBS), Gwangju 61005, Republic of Korea.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 3):138624. doi: 10.1016/j.jcis.2025.138624. Epub 2025 Aug 6.
This study presents an effective approach to enhancing the catalytic performance, long-term stability, and surface hydrophilicity of porous nickel (Ni) substrates for the hydrogen evolution reaction (HER) via controlled surface oxidation without additional catalysts. In this study, the Ni tape-cast substrate (Ni-TCS), fabricated through a tape-casting method followed by oxidation and reduction treatments, exhibited a large surface area and fine porosity, resulting in a significantly improved catalytic activity compared to conventional Ni foam. Through partial oxidation at temperatures ranging from 300 °C to 450 °C, a catalytically favorable nickel oxide (NiO) nano layer was produced directly on the Ni-TCS surface, enhancing the HER activity and stabilizing the NiO/Ni interface for durability. Additionally, the NiO nano layer rendered the electrode surface hydrophilic as confirmed through contact angle measurements, facilitating effective electrolyte contact and improving mass transport. The Ni-TCS electrode oxidized at 400 °C (Ni-TCS400) demonstrated the highest HER activity, sustaining excellent stability at 500 mA cm over 500 h. Ni-TCS400 exhibited lower kinetic and mass-transfer overpotentials than those of the Ni-TCS in an alkaline water electrolyzer (AWE) system, while a voltage of 1.81 V was required to achieve a current density of 0.4 A cm. Overall, the partial oxidation strategy circumvents the use of binders or precursors, while enabling improved stability, simplified fabrication, and high catalytic activity, making it a promising approach for the development of durable, efficient AWE electrodes.
本研究提出了一种有效的方法,通过可控的表面氧化,在不添加额外催化剂的情况下,提高用于析氢反应(HER)的多孔镍(Ni)基底的催化性能、长期稳定性和表面亲水性。在本研究中,通过流延法制备并经过氧化和还原处理的Ni流延基底(Ni-TCS)具有较大的表面积和良好的孔隙率,与传统泡沫镍相比,其催化活性显著提高。通过在300℃至450℃的温度范围内进行部分氧化,在Ni-TCS表面直接生成了具有催化活性的氧化镍(NiO)纳米层,提高了HER活性并稳定了NiO/Ni界面以提高耐久性。此外,通过接触角测量证实,NiO纳米层使电极表面具有亲水性,有利于电解质的有效接触并改善传质。在400℃氧化的Ni-TCS电极(Ni-TCS400)表现出最高的HER活性,在500 mA cm下持续500 h保持优异的稳定性。在碱性水电解槽(AWE)系统中,Ni-TCS400的动力学和传质过电位低于Ni-TCS,而达到0.4 A cm的电流密度需要1.81 V的电压。总体而言,部分氧化策略避免了使用粘合剂或前驱体,同时提高了稳定性、简化了制备过程并具有高催化活性,使其成为开发耐用、高效AWE电极的一种有前景的方法。