Suppr超能文献

使用几何、剂量测定法和预测毒性对人工智能自动轮廓勾画软件生成的直肠轮廓进行评估。

An evaluation of rectum contours generated by artificial intelligence automatic contouring software using geometry, dosimetry and predicted toxicity.

作者信息

McLaughlin Owen, Gholami Fereshteh, Osman Sarah, O'Sullivan Joe M, McMahon Stephen J, Jain Suneil, McGarry Conor K

机构信息

Queen's University Belfast, Patrick G Johnston Centre for Cancer Research, Belfast, Northern Ireland, BT9 7AE, United Kingdom.

University College London Hospitals NHS Foundation Trust Department of Radiotherapy, University College London, 235 Euston Road, United Kingdom.

出版信息

Biomed Phys Eng Express. 2025 Aug 21;11(5). doi: 10.1088/2057-1976/adf8f2.

Abstract

. This study assesses rectum organ at risk contours generated using a commercial deep learning auto-contouring model and compares them to clinician contours using geometry, changes in dosimetry and toxicity modelling.This retrospective study involved 308 prostate cancer patients who were treated using 3D-conformal radiotherapy. Computed tomography images were input into Limbus Contour (v1.8.0b3) to generate auto-contour structures for each patient. Auto-contours were not edited after their generation. Rectum auto-contours were compared to clinician contours geometrically and dosimetrically. Dice similarity coefficient (DSC), mean Hausdorff distance (HD) and volume difference were assessed. Dose-volume histogram (DVH) constraints (V41% - V100%) were compared, and a Wilcoxon signed-rank test was used to evaluate statistical significance of differences. Toxicity modelling to compare contours was carried out using equivalent uniform dose (EUD) and clinical factors of abdominal surgery and atrial fibrillation. Trained models were tested (80:20) in their prediction of grade 1 and above late rectal bleeding (n= 124) using area-under the receiver operating characteristic curve (AUC).. Median DSC (interquartile range (IQR)) was 0.85 (0.09), median HD was 1.38 mm (0.60 mm) and median volume difference was -1.73 cc (14.58 cc). Median DVH differences between contours were found to be small (<1.5%) for all constraints although systematically larger than clinician contours (p < 0.05). However, an IQR up to 8.0% was seen for individual patients across all dose constraints. Models using EUD alone derived from clinician or auto-contours had AUCs of 0.60 (0.10) and 0.60 (0.09). AUC for models involving clinical factors and dosimetry was 0.65 (0.09) and 0.66 (0.09) when using clinician contours and auto-contours.Although median DVH metrics were similar, variation for individual patients highlights the importance of clinician review. Rectal bleeding prediction accuracy did not depend on the contour method for this cohort. The auto-contouring model used in this study shows promise in a supervised workflow.

摘要

本研究评估了使用商业深度学习自动轮廓模型生成的直肠危及器官轮廓,并将其与临床医生的轮廓在几何形状、剂量学变化和毒性建模方面进行比较。这项回顾性研究纳入了308例接受三维适形放疗的前列腺癌患者。将计算机断层扫描图像输入Limbus Contour(v1.8.0b3)为每位患者生成自动轮廓结构。自动轮廓生成后未进行编辑。将直肠自动轮廓与临床医生的轮廓在几何和剂量学方面进行比较。评估了骰子相似系数(DSC)、平均豪斯多夫距离(HD)和体积差异。比较了剂量体积直方图(DVH)约束(V41%-V100%),并使用Wilcoxon符号秩检验评估差异的统计学显著性。使用等效均匀剂量(EUD)以及腹部手术和心房颤动的临床因素进行毒性建模以比较轮廓。使用受试者操作特征曲线下面积(AUC)对训练模型预测1级及以上晚期直肠出血(n=124)进行测试(80:20)。DSC中位数(四分位间距(IQR))为0.85(0.09),HD中位数为1.38毫米(0.60毫米),体积差异中位数为-1.73立方厘米(14.58立方厘米)。尽管轮廓之间的DVH差异中位数在所有约束条件下均较小(<1.5%),但系统地大于临床医生的轮廓(p<0.05)。然而,在所有剂量约束条件下,个别患者的IQR高达8.0%。仅使用从临床医生或自动轮廓得出的EUD的模型的AUC分别为0.60(0.10)和0.60(0.09)。使用临床医生轮廓和自动轮廓时,涉及临床因素和剂量学的模型的AUC分别为0.65(0.09)和0.66(0.09)。尽管DVH指标中位数相似,但个别患者的差异突出了临床医生审核的重要性。该队列中直肠出血的预测准确性不取决于轮廓方法。本研究中使用的自动轮廓模型在监督工作流程中显示出前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验