文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

药物研发的变革:将人工智能与定量系统药理学相结合。

Revolutionizing drug discovery: Integrating artificial intelligence with quantitative systems pharmacology.

作者信息

Goryanin Igor, Goryanin Irina, Demin Oleg

机构信息

University of Edinburgh, Edinburgh, UK; MMWR LTD, Edinburgh, UK.

MMWR LTD, Edinburgh, UK.

出版信息

Drug Discov Today. 2025 Aug 6;30(9):104448. doi: 10.1016/j.drudis.2025.104448.


DOI:10.1016/j.drudis.2025.104448
PMID:40774584
Abstract

Quantitative systems pharmacology (QSP) provides a mechanistic framework for integrating diverse biological, physiological, and pharmacological data to predict drug interactions and clinical outcomes. Recent advances in artificial intelligence (AI) might transform QSP by enhancing model generation, parameter estimation, and predictive capabilities. AI-driven databases and cloud-based platforms might support QSP model development and facilitate QSP as a service (QSPaaS). However, challenges such as computational complexity, high dimensionality, explainability, data integration, and regulatory acceptance persist. This review critically evaluates the integration of AI within QSP, highlighting novel methodologies like surrogate modeling, virtual patient generation, and digital twin technologies. It also discusses current limitations and outlines strategies for future integration to enhance precision medicine, regulatory acceptability, and mechanistic interpretability in drug discovery and development.

摘要

定量系统药理学(QSP)提供了一个机制框架,用于整合各种生物学、生理学和药理学数据,以预测药物相互作用和临床结果。人工智能(AI)的最新进展可能通过增强模型生成、参数估计和预测能力来改变QSP。人工智能驱动的数据库和基于云的平台可能支持QSP模型开发,并促进作为一种服务的QSP(QSPaaS)。然而,诸如计算复杂性、高维度、可解释性、数据整合和监管接受度等挑战依然存在。本综述批判性地评估了人工智能在QSP中的整合,突出了替代建模、虚拟患者生成和数字孪生技术等新方法。它还讨论了当前的局限性,并概述了未来整合的策略,以提高药物发现和开发中的精准医学、监管可接受性和机制可解释性。

相似文献

[1]
Revolutionizing drug discovery: Integrating artificial intelligence with quantitative systems pharmacology.

Drug Discov Today. 2025-8-6

[2]
The dawn of a new era: can machine learning and large language models reshape QSP modeling?

J Pharmacokinet Pharmacodyn. 2025-6-16

[3]
Leveraging large language models to compare perspectives on integrating QSP and AI/ML.

J Pharmacokinet Pharmacodyn. 2025-5-5

[4]
Artificial-intelligence-driven Innovations in Mechanistic Computational Modeling and Digital Twins for Biomedical Applications.

J Mol Biol. 2025-4-30

[5]
AI in Clinical Trials and Drug Development: Challenges and Potential Advancements.

Curr Drug Discov Technol. 2024-10-28

[6]
Recent Development, Applications, and Patents of Artificial Intelligence in Drug Design and Development.

Curr Drug Discov Technol. 2025-2-10

[7]
The Use of AI for Phenotype-Genotype Mapping.

Methods Mol Biol. 2025

[8]
AML diagnostics in the 21st century: Use of AI.

Semin Hematol. 2025-6-16

[9]
Revolutionizing surgery: AI and robotics for precision, risk reduction, and innovation.

J Robot Surg. 2025-1-7

[10]
Digital Twins for Personalized Medicine Require Epidemiological Data and Mathematical Modeling: Viewpoint.

J Med Internet Res. 2025-8-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索