Goryanin Igor, Goryanin Irina, Demin Oleg
University of Edinburgh, Edinburgh, UK; MMWR LTD, Edinburgh, UK.
MMWR LTD, Edinburgh, UK.
Drug Discov Today. 2025 Aug 6;30(9):104448. doi: 10.1016/j.drudis.2025.104448.
Quantitative systems pharmacology (QSP) provides a mechanistic framework for integrating diverse biological, physiological, and pharmacological data to predict drug interactions and clinical outcomes. Recent advances in artificial intelligence (AI) might transform QSP by enhancing model generation, parameter estimation, and predictive capabilities. AI-driven databases and cloud-based platforms might support QSP model development and facilitate QSP as a service (QSPaaS). However, challenges such as computational complexity, high dimensionality, explainability, data integration, and regulatory acceptance persist. This review critically evaluates the integration of AI within QSP, highlighting novel methodologies like surrogate modeling, virtual patient generation, and digital twin technologies. It also discusses current limitations and outlines strategies for future integration to enhance precision medicine, regulatory acceptability, and mechanistic interpretability in drug discovery and development.
定量系统药理学(QSP)提供了一个机制框架,用于整合各种生物学、生理学和药理学数据,以预测药物相互作用和临床结果。人工智能(AI)的最新进展可能通过增强模型生成、参数估计和预测能力来改变QSP。人工智能驱动的数据库和基于云的平台可能支持QSP模型开发,并促进作为一种服务的QSP(QSPaaS)。然而,诸如计算复杂性、高维度、可解释性、数据整合和监管接受度等挑战依然存在。本综述批判性地评估了人工智能在QSP中的整合,突出了替代建模、虚拟患者生成和数字孪生技术等新方法。它还讨论了当前的局限性,并概述了未来整合的策略,以提高药物发现和开发中的精准医学、监管可接受性和机制可解释性。
Drug Discov Today. 2025-8-6
J Pharmacokinet Pharmacodyn. 2025-6-16
J Pharmacokinet Pharmacodyn. 2025-5-5
Curr Drug Discov Technol. 2024-10-28
Curr Drug Discov Technol. 2025-2-10
Methods Mol Biol. 2025
Semin Hematol. 2025-6-16
J Robot Surg. 2025-1-7
J Med Internet Res. 2025-8-5