Teng Fuquan, Yang Yang, Gao Qingwei, Wei Zengxi, Li Yingcheng, Cui Jing, Zhao Shuangliang
Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
SINOPEC Shanghai Research Institute of Petrochemical Technology Co. Ltd., Shanghai 201208, China.
J Phys Chem B. 2025 Aug 21;129(33):8548-8560. doi: 10.1021/acs.jpcb.5c03329. Epub 2025 Aug 7.
The development of high-performance polyimide (PI) membranes for efficient gas separation is of great importance, yet challenging. Herein, we design 17 6FDA-based PI membranes and employ molecular dynamics (MD) simulations to investigate their carbon dioxide (CO) /methane (CH) separation performance. The 6FDA-Durene membrane emerges as a standout candidate, with a mean pore size (MPS) of 5.12 Å, achieving a CO permeability of 13,271.40 Barrer and a CO/CH selectivity of 26.87, surpassing the 2019 upper bound. Further analysis reveals that the steric effect in ultramicropores is favorable for improving CO selectivity, while the combination of outstanding gas diffusivity and high-effective gas solubility in larger pores enables this optimal membrane to exceed the upper bound. When the MPS is increased to 7.06 Å, the CO permeability is improved by approximately 5-fold (up to 66,552.28 Barrer), while the CO/CH selectivity dropped to 5.08 (below the 2008 upper bound). This reduction in selectivity is a consequence of the decline in both gas diffusivity and gas solubility. This study emphasizes the crucial relationship between membrane structures and separation efficiency, offering invaluable insights for the development of advanced PI membranes with enhanced selective transport performance.
开发用于高效气体分离的高性能聚酰亚胺(PI)膜具有重要意义,但也具有挑战性。在此,我们设计了17种基于6FDA的PI膜,并采用分子动力学(MD)模拟来研究它们对二氧化碳(CO₂)/甲烷(CH₄)的分离性能。6FDA-均四甲苯膜成为一个突出的候选者,其平均孔径(MPS)为5.12 Å,CO₂渗透率达到13271.40 Barrer,CO₂/CH₄选择性为26.87,超过了2019年的上限。进一步分析表明,超微孔中的空间效应有利于提高CO₂选择性,而较大孔中出色的气体扩散率和高效的气体溶解度相结合,使这种最优膜能够超过上限。当MPS增加到7.06 Å时,CO₂渗透率提高了约5倍(达到66552.28 Barrer),而CO₂/CH₄选择性降至5.08(低于2008年的上限)。选择性的降低是气体扩散率和气体溶解度下降的结果。本研究强调了膜结构与分离效率之间的关键关系,为开发具有增强选择性传输性能的先进PI膜提供了宝贵的见解。