文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的细胞外基质相关特征的开发与验证,用于预测青少年和青年胶质瘤患者的预后

Machine learning derived development and validation of extracellular matrix related signature for predicting prognosis in adolescents and young adults glioma.

作者信息

Wu Pancheng, Zheng Yi, Wu Wei, Zhang Beichen, Wang Yichang, Zhou Mingjing, Liu Ziyi, Wang Zhao, Wang Maode, Wang Jia

机构信息

Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

出版信息

Sci Rep. 2025 Aug 7;15(1):28926. doi: 10.1038/s41598-025-13547-6.


DOI:10.1038/s41598-025-13547-6
PMID:40774998
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12331974/
Abstract

The mortality rates have been increasing for glioma in adolescents and young adults (AYAs, aged 15-39 years). However, current biomarkers for clinical assessment in AYAs glioma are limited, prompting the urgent need for identifying ideal prognostic signature. Extracellular matrix is involved in the development of tumors, while their prognostic significance in AYAs glioma remains unclear. By an integrated machine learning workflow and circuit training and validation procedure, we developed a machine learning-derived prognostic signature (MLDPS) based on 1,026 extracellular matrix-related genes and 3 AYAs glioma cohorts. MLDPS exhibited robust and consistent predictive performance in overall survival and could serve as an independent prognostic factor for AYAs glioma. Simultaneously, MLDPS outperformed previous 89 published prognostic signatures and traditional clinical characteristics, confirming the robust predictive capability. Besides, MLDPS had the potential to stratify prognosis in patients with other cancer types. In addition, the tumor microenvironment between high and low MLDPS groups displayed different patterns while more tumor-infiltrating immune cells were observed in high MLDPS group. Additionally, patients in low MLDPS group had significantly prolonged survival when received immunotherapy in cancers including glioblastoma, urothelial carcinoma and melanoma. Overall, our study proposes a promising signature, which can be utilized for clinicians to evaluate prognosis and might provide individualized clinical management for AYAs glioma.

摘要

青少年和青年(15 - 39岁)的胶质瘤死亡率一直在上升。然而,目前用于青少年胶质瘤临床评估的生物标志物有限,这促使人们迫切需要确定理想的预后特征。细胞外基质参与肿瘤的发展,但其在青少年胶质瘤中的预后意义仍不清楚。通过综合机器学习工作流程以及循环训练和验证程序,我们基于1026个细胞外基质相关基因和3个青少年胶质瘤队列开发了一种机器学习衍生的预后特征(MLDPS)。MLDPS在总生存期方面表现出强大且一致的预测性能,可作为青少年胶质瘤的独立预后因素。同时,MLDPS优于之前发表的89种预后特征和传统临床特征,证实了其强大的预测能力。此外,MLDPS有可能对其他癌症类型患者的预后进行分层。此外,高MLDPS组和低MLDPS组之间的肿瘤微环境呈现出不同模式,高MLDPS组中观察到更多肿瘤浸润免疫细胞。此外,低MLDPS组的患者在接受包括胶质母细胞瘤、尿路上皮癌和黑色素瘤等癌症的免疫治疗时,生存期显著延长。总体而言,我们的研究提出了一个有前景的特征,可用于临床医生评估预后,并可能为青少年胶质瘤提供个体化临床管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/364bfa7f22da/41598_2025_13547_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/11c293f65c0c/41598_2025_13547_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/b500299b5936/41598_2025_13547_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/75044716c095/41598_2025_13547_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/4df2f2f513ab/41598_2025_13547_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/94e3217984cf/41598_2025_13547_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/90b34f8a9a2f/41598_2025_13547_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/364bfa7f22da/41598_2025_13547_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/11c293f65c0c/41598_2025_13547_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/b500299b5936/41598_2025_13547_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/75044716c095/41598_2025_13547_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/4df2f2f513ab/41598_2025_13547_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/94e3217984cf/41598_2025_13547_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/90b34f8a9a2f/41598_2025_13547_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c9f/12331974/364bfa7f22da/41598_2025_13547_Fig7_HTML.jpg

相似文献

[1]
Machine learning derived development and validation of extracellular matrix related signature for predicting prognosis in adolescents and young adults glioma.

Sci Rep. 2025-8-7

[2]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[3]
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.

Front Immunol. 2025-7-24

[4]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[5]
High ELK3 expression is associated with the wild type IDH1 in glioma and enhances infiltration of M2 macrophages.

Int Immunopharmacol. 2025-8-28

[6]
An immune-related gene signature for determining Ewing sarcoma prognosis based on machine learning.

J Cancer Res Clin Oncol. 2021-1

[7]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[8]
Construction and validation of a lipid metabolism-related genes prognostic signature for skin cutaneous melanoma.

Biochem Biophys Res Commun. 2025-5-29

[9]
A prognostic microRNA-based signature for localized clear cell renal cell carcinoma: the Bio-miR study.

Br J Cancer. 2025-5-7

[10]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

本文引用的文献

[1]
Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies.

Mol Cancer. 2025-2-26

[2]
Complex heatmap visualization.

Imeta. 2022-8-1

[3]
Machine learning-based identification of a consensus immune-derived gene signature to improve head and neck squamous cell carcinoma therapy and outcome.

Front Pharmacol. 2024-4-10

[4]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[5]
Machine learning unveils immune-related signature in multicenter glioma studies.

iScience. 2024-2-23

[6]
Glioma: bridging the tumor microenvironment, patient immune profiles and novel personalized immunotherapy.

Front Immunol. 2024-1-11

[7]
Machine learning-derived identification of prognostic signature for improving prognosis and drug response in patients with ovarian cancer.

J Cell Mol Med. 2024-1

[8]
MAPK signaling pathway-based glioma subtypes, machine-learning risk model, and key hub proteins identification.

Sci Rep. 2023-11-4

[9]
Role of the Microenvironment in Glioma Pathogenesis.

Annu Rev Pathol. 2024-1-24

[10]
Bridging the age gap: a review of molecularly informed treatments for glioma in adolescents and young adults.

Front Oncol. 2023-9-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索