Suppr超能文献

机器学习衍生的卵巢癌患者预后和药物反应的预后特征识别。

Machine learning-derived identification of prognostic signature for improving prognosis and drug response in patients with ovarian cancer.

机构信息

Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.

Bidding Management Office, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.

出版信息

J Cell Mol Med. 2024 Jan;28(1):e18021. doi: 10.1111/jcmm.18021. Epub 2023 Nov 23.

Abstract

Clinical assessments relying on pathology classification demonstrate limited effectiveness in predicting clinical outcomes and providing optimal treatment for patients with ovarian cancer (OV). Consequently, there is an urgent requirement for an ideal biomarker to facilitate precision medicine. To address this issue, we selected 15 multicentre cohorts, comprising 12 OV cohorts and 3 immunotherapy cohorts. Initially, we identified a set of robust prognostic risk genes using data from the 12 OV cohorts. Subsequently, we employed a consensus cluster analysis to identify distinct clusters based on the expression profiles of the risk genes. Finally, a machine learning-derived prognostic signature (MLDPS) was developed based on differentially expressed genes and univariate Cox regression genes between the clusters by using 10 machine-learning algorithms (101 combinations). Patients with high MLDPS had unfavourable survival rates and have good prediction performance in all cohorts and in-house cohorts. The MLDPS exhibited robust and dramatically superior capability than 21 published signatures. Of note, low MLDIS have a positive prognostic impact on patients treated with anti-PD-1 immunotherapy by driving changes in the level of infiltration of immune cells. Additionally, patients suffering from OV with low MLDIS were more sensitive to immunotherapy. Meanwhile, patients with low MLDIS might benefit from chemotherapy, and 19 compounds that may be potential agents for patients with low MLDIS were identified. MLDIS presents an appealing instrument for the identification of patients at high/low risk. This could enhance the precision treatment, ultimately guiding the clinical management of OV.

摘要

临床评估依赖于病理分类,在预测卵巢癌 (OV) 患者的临床结局和提供最佳治疗方面效果有限。因此,迫切需要一种理想的生物标志物来促进精准医学。为了解决这个问题,我们选择了 15 个多中心队列,包括 12 个 OV 队列和 3 个免疫治疗队列。首先,我们使用来自 12 个 OV 队列的数据确定了一组稳健的预后风险基因。随后,我们采用共识聚类分析根据风险基因的表达谱来识别不同的簇。最后,我们使用 10 种机器学习算法(101 种组合),基于簇之间差异表达基因和单变量 Cox 回归基因,开发了一种基于机器学习的预后签名(MLDPS)。高 MLDPS 患者的生存率较差,在所有队列和内部队列中均具有良好的预测性能。MLDPS 表现出比 21 个已发表签名更稳健和显著优越的能力。值得注意的是,低 MLDIS 对接受抗 PD-1 免疫治疗的患者具有积极的预后影响,通过驱动免疫细胞浸润水平的变化。此外,低 MLDIS 的 OV 患者对免疫治疗更敏感。同时,低 MLDIS 患者可能受益于化疗,确定了 19 种可能对低 MLDIS 患者有效的化合物。MLDIS 是一种有吸引力的工具,用于识别高/低风险患者。这可以增强精准治疗,最终指导 OV 的临床管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caad/10805490/3249dcf0217f/JCMM-28-e18021-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验