Kai Hironori, Hata Shinro, Hamamatsu Noriko, Shinohara Mayuka, Matsuura Keiko, Mimata Hiromitsu, Shin Toshitaka
Department of Urology, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan.
Department of Biomedicine, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan.
Sci Rep. 2025 Aug 7;15(1):28987. doi: 10.1038/s41598-025-13764-z.
Stress urinary incontinence commonly arises with aging or following prostatectomy, yet its underlying mechanisms remain unclear. To address this, we investigated the role of metabolic pathways-particularly the tricarboxylic acid (TCA) cycle-in the differentiation of human external urethral sphincter myoblasts. Immortalized sphincter cells (US2-KD) were induced to differentiate over 192 h. Metabolomic profiling using gas chromatography-mass spectrometry, along with pathway enrichment analysis, identified key metabolic changes. Inhibition of mitochondrial pyruvate transport with UK5099 markedly suppressed TCA cycle metabolites, including citrate, α-ketoglutarate, fumarate, and malate. This inhibition also significantly reduced MYH7 expression and intracellular adenosine triphosphate levels throughout the differentiation period. These results demonstrate that the TCA cycle plays a critical role in both energy metabolism and the differentiation of urethral sphincter myoblasts. This study is the first to suggest that impaired TCA cycle activity may contribute to the pathogenesis of Stress urinary incontinence and represents a potential therapeutic target. Our findings offer new insight into age-related metabolic decline associated with Stress urinary incontinence and support the development of therapies that combine metabolic modulation with regenerative approaches.
压力性尿失禁通常随着年龄增长或前列腺切除术后出现,但其潜在机制仍不清楚。为了解决这个问题,我们研究了代谢途径,特别是三羧酸(TCA)循环,在人尿道外括约肌成肌细胞分化中的作用。永生化括约肌细胞(US2-KD)在192小时内被诱导分化。使用气相色谱-质谱联用技术进行代谢组学分析,并结合通路富集分析,确定了关键的代谢变化。用UK5099抑制线粒体丙酮酸转运显著抑制了TCA循环代谢物,包括柠檬酸、α-酮戊二酸、富马酸和苹果酸。这种抑制作用在整个分化期也显著降低了MYH7表达和细胞内三磷酸腺苷水平。这些结果表明,TCA循环在能量代谢和尿道括约肌成肌细胞分化中都起着关键作用。这项研究首次表明,TCA循环活性受损可能导致压力性尿失禁的发病机制,并代表了一个潜在的治疗靶点。我们的研究结果为与压力性尿失禁相关的年龄相关性代谢衰退提供了新的见解,并支持将代谢调节与再生方法相结合的治疗方法的开发。
Cochrane Database Syst Rev. 2017-7-26
Cochrane Database Syst Rev. 2015-10-29
Cochrane Database Syst Rev. 2014-6-1
Cochrane Database Syst Rev. 2014-9-27
Cochrane Database Syst Rev. 2017-7-31
Microbiol Spectr. 2025-8-5
Biochem Biophys Res Commun. 2024-12-17
Transl Androl Urol. 2024-8-31
J Cachexia Sarcopenia Muscle. 2024-10