Castillo-Casaña Yaisa, Kawasaki Laura, Arias Clorinda, Ruelas-Ramírez Hilario, Funes Soledad, Sánchez Norma Silvia, Códiz-Huerta María Guadalupe, Ongay-Larios Laura, Coria Roberto
Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, UNAM, 04510, Cd Mex, México.
Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, 04510, Cd Mex, México.
Mol Neurobiol. 2025 Aug 8. doi: 10.1007/s12035-025-05255-z.
The microtubule-associated protein tau plays a central role in neurodegenerative diseases, called tauopathies, but the mechanism involved remains incompletely understood. Here, we used Saccharomyces cerevisiae as a model system to investigate the consequences of expressing the shortest human tau isoform 0N3R. After transfected, we detected widespread cellular distribution of tau and phosphorylation at key pathological residues involved in Alzheimer's disease (Ser199/202). We also found that a portion of tau localizes within the mitochondrial matrix. The mitochondrial uptake of tau required a chaperone machinery, including Hsp104 and the Ssa1/Ydj1 bichaperone complex. Functionally, tau expression caused marked mitochondrial fragmentation, reduced oxygen consumption, and a decrease in membrane potential during stationary phase, indicating impaired mitochondrial function. This dysfunction activated the yeast retrograde signaling pathway. Importantly, tau expression enhanced mitochondrial clearance through mitophagy, both under nitrogen starvation and during stationary phase, and this effect was dependent on the retrograde response. Together, these findings demonstrate that tau expression in yeast perturbs mitochondrial homeostasis, triggering both compensatory nuclear signaling and increased mitochondrial turnover, adding evidence on the potential mechanisms involved in tau neurotoxicity.
微管相关蛋白tau在被称为tau蛋白病的神经退行性疾病中起着核心作用,但其涉及的机制仍未完全了解。在这里,我们使用酿酒酵母作为模型系统来研究表达最短的人类tau异构体0N3R的后果。转染后,我们检测到tau在细胞中的广泛分布以及在阿尔茨海默病相关关键病理残基(Ser199/202)处的磷酸化。我们还发现一部分tau定位于线粒体基质中。tau的线粒体摄取需要一种伴侣机制,包括Hsp104和Ssa1/Ydj1双伴侣复合体。在功能上,tau的表达导致明显的线粒体碎片化、氧气消耗减少以及稳定期膜电位降低,表明线粒体功能受损。这种功能障碍激活了酵母逆行信号通路。重要的是,无论是在氮饥饿还是稳定期,tau的表达都通过线粒体自噬增强了线粒体清除,并且这种效应依赖于逆行反应。总之,这些发现表明酵母中tau的表达扰乱了线粒体稳态,引发了补偿性核信号传导和线粒体更新增加,为tau神经毒性的潜在机制提供了更多证据。